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I. INTRODUCTION

In the fields of biology, chemistry, and physics there are
numerous examples of experimental situations which yield data that
may be reasonably described by the following set of regression
eéuations:

m -A

X
= k7]
Yij @y + E @ e + Eij (1.1)

for i = 1,2,...,n and j = 1,2,...,N. In this expression Yij and
eij represent random variables associated with the jth observation
on the ith equation; xj represents an independent variable, e.g.,
time; and the aik's and Ak's are constant parameters that are
inherent in the physical or experimental situation. One of the
prime examples of such an experimental situation which will be
referred to a great number of times during this research involves
fhe use of radioactive tracers in order to study certain biological
processes \

 For single equation regression models, there have been many
estimation procedures developed and in Chapter 2 we will discuss
some of the single equation nonlinear estimation procedures that
are pertinent to this research as well as other related literature.

In Chapter 3 we will present a discussion of the various types of

regression models - to be used in this research and we will show how
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the regression equations used to describe a mammillary or catenary
compartment model are members of the class of regression models
given by (1.1). Also in this chapter some of the‘aistributional
assumptions concerning the random variables will be stated. In
Chapter 4 a generalized least squares estimation procedure will

be presented and evaluated. This generalized procedure may be
applied not only to the class of regression models given by (1.1),
but, under certain regularity conditions to be given then, also to

the more general class of regression models described by:

Yij = fi(Xj;e) + Eij (1.2)
where Yij and eij are the same as defined in (1.1); fi represents
the regression function for the ith equation; Xj represents a

vector of independent variables; and 6 represents a vector of
constant parameters to be estimated. ‘In Chapter 5 a generalization
of the partial total estimation procedure as discussed by Cornell
{1962] will be presented and evaluated. This estimation procedure
will be applied to the class of regression functions in (1.1)
when n = m. In Chapter 6 a generalization of the Spearman
estimation procedure as discussed by Johnson and Brown [1961] will
be presented and evaluated for a particular class of regression
functions in (1.1) when n = m.

From an investigation of equation (1.1) we note that the
set of exponential parameters Al,xz,...,km is present in each one

of the regression equations. These exponential parameters are
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usually of primary interest in experimental situations and therefore
our main concern has been with the estimation of the parameters that
are common to some of the regression equations, even though our
general concern has been with the estimation of all of the constant
parameters in our regression model. We also have dealt exclusively
with estimation schemes that make use simultaneously of all of the
observations available on all of the equations being studied. In
Chapters 4, 5, and 6 the range of the subscript j of equations (1.1)
and (1.2) will change as we go from one estimation scheme to another,
since the requirements on the total number of observations and the
spacing of the observations change from one procedure to another.
However, we will attempt to make these changes clear as the
different procedures are presented.

In Chapter 7 numerical examples of the various estimation
procedures will be given and a comparison of the various procedures
will be given. This chapter will also contain suggestions that
will help the experimenter design his experiment in order to make

the best use of these estimation procedures.



ITI. REVIEW OF LITERATURE

2.1 Introduction

In this chapter we want to review papers that are concerned
with presently used nonlinear estimation procedures before our
generalized estimation schemes are presented. In Section 2.2 our
discussion will be devoted to those papers that consider the problem
of nonlinear estimation for a single nonlinear regression equation.
Also included will be a discussion of least squares nonlinear
estimation as well as other nonlinear estimation procedures. In
Section 2.3 papers that have considered the problem of siﬁultaneous
estimation of parameters in a set of regression functions will be
discussed. Then since some of the generalized estimation procedures
presented in this research are restricted to particular regression
models, Section 2.4 will discuss how the mcdels as given by
equation (1.1) arise in tracer experiments. The papers referred
to in this chapter are meant in no way to be a complete review of
the literature concerned with nonlinear estimation; however, they

have been selected because of their pertinence to this research.

2.2 Single equation estimation procedures
In this section wé:will be interested only in the case when

n = 1 from equation (1.2), and therefore we will suppress the

4



subscript 1.

One of the more heavily used nonlinear estimation procedures
is the iterative least squares technique which may be attributed to
the work of Gauss (see translation of Gauss' work by Trotter [1957]),
who was among the first to use the Newton or Newton-Raphson method
for the specific purpose of estimating the parameters in nonlinear
regression equations by the least squares method. The basic aim of
the least squares estimation techniques is the minimization of

N

$(8) = I [y

- £(X,;0)1° (2.1)
j=1 .

3
where yj, f, Xj, and & have been defined in equation (1.2). The
usual Gaussian procedure involves the approximation of the original
nonlinear function, £, by a linear model by means of a Taylor series
expansion of f through the linear terms about a point of initial
estimates of the vector of parameters, 6. The details of this
estimation procedure will be presented in Chapter 4 since this
procedure is incorporated into the simultaneous nonlinear least
$quares estimation method developed there.

One of the problems that occasionally arises with the
application of the Gaussian iterative technique of estimation is
the problem of convergence, and some authors have presented
modifications to the Gaussian technique in order to circumvent this
problem. Hartley [1961] presents some assumptions for and
modifications to the Gauss-Newton estimation method and his

modified Gauss-Newton method has the merit of guaranteed convergence
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under the assumptions to be given in Chapter &4 where the detailed
steps of the modified procedure will also be given. Levenberg {19441

extends the standard Gaussian iterative technique so that an

improvement of the initial estimate, 09, of the vector of parameters

® could be ensured, i.e. improved in the sense that ¢(16) < ¢(°6)

~

where 16 is the new estimate of the vector 6 derived from the initial

estimate 06. Levenberg proposes that the following augmented sum

of squares be minimized over the range of the elements of 6:

- =2 ~2 ~2
* = wok
¢ wo* + a; 061 + a, 062 +...+ ap °6P (2.2)
where
N N (1) : (p)\2
* = - - - -
¢ jil(yj ofj 061 ofj ces o§p ofj )5, (2.3)
A - - of (X5 6)
= - . - ) . (b) _ 0
°6b = (eb oeb), ij = f(Xj,OO), and ij = —55;————— for

b=12,...,p and j = 1,2,...,N. The elements al,az,...,ap are
positive constants expressing the relative importance of the

~

different increments, osb’ and w is a positive constant expressing
the relative importance of the approximating sum of squares ¢*.
Let 8(w) denote that point in the parameter space at which ¢*
achieves its minimum, then Levenberg determines the constants

w,al,...,ap by the following procedure:

(1) The best theoretical value of w would be determined by solving

de(e(w)) _ .
- = 0; (2.4)
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however, this equation is usually difficult to solve so an
approximate method will be used. The approximation involves

setting the following expression equal to zero:
. - 9
2(8GN) = (0 + w<d éw(‘“))> : (2.5)
w=0

(2) The constants al,az,...,ap are chosen so that the directiomal
derivative of ¢, taken at w = 0 along the curve 6 = 8(w), should
have its minimum value, namely, the negative gradient. Levenberg
shows that this criterion is satisfied when al,az,...,ap are all
equal.
Levenberg also demonstrates the following for his procedure:
(1) The minimization of (2.2) also diminishes the sum of squares
of the approximating residuals ¢*.
(2) The increments given by the standard least squares solution
are improved.
(3) Values of w can be found for which the sums of squares of the
true residuals $(8) can be reduced.
(4) The usual least squares solutions for 8 correspond to the
case where w»» and hence is a special case of this procedure.
Another iterative procedure that can be used to determine
those values of 6 that minimize the expression ¢(8) is the gradient
method or the method of steepest descent. This method is similar
to the Gauss-Newton method in that one has a preliminary estimate
of 0, denoted by oé’ and attempts to find a new estimate for 6,

say 16, which is better than J8 in the sense that ¢(16) < ¢(°6).
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The gradient or steepest descent method merely steps off from the
current preliminary trial value in the direction of the negative
gradient of ¢(8). One limitation with the various gradient methods
is the one of slow convergence. In order to circumvent some of
the problems inherent in the gradient and Gaussian estimation
techniques, Marquardt [1963] develops "a maximum neighborhood
method [that], in effect, performs an optimum interpolation between
the Taylor series [Gauss-Newton] method and the gradient method,
the interpolation being based upon the maximum neighborhood in
which the truncated Taylor series gives an adequate representation
of the nonlinear model." Marquardt's method involves solving the

A

following equation for OG:

T N T
(OF oF + CI)OG = JF Y (2.6)
(b) - :
where OF = {ofj s 3= 1,2,....,N, b=1,2,...,pl is an N x p
) _8fX.5 9), L _ (& _
matrix where ofj = aeb 3’07 05 (OGb,b 1,2,...,p) is a
p x 1 vector where 06b =0 - Oeb; J = (yj - f(Xj;OG),

j=1,2,...,N) is an N x 1 vector; and ¢ > 0. The superscript T
on a matrix or vector represents the transpose of the corresponding

matrix or vector. An outline of Marquardt's estimation procedure

is given as follows:

Let B = FT F and define the new matrix B#* by
o o o o




T
Let = i K = * ... *) =
e oG OF R and define OG (ogl, ,ogp)

o®1 cee ogg S th
—_ ? . At the w  iteration solve the following
’/obll b

° PP

equation for  &%*:

* * = Q%
(wB + ch)wé wG . (2.7)
% §*
- ~ w 1 wp T
Then 6 is obtained by 6 = yees )
w w T
Y b Y b
w 11 w PP

A new trial vector is found by taking 8= 86+ 6 and the

w+l w w
procedure is continued until w6 becomes sufficiently small. The
aim of the procedure is to minimize ¢ in the "neighborhood over
which the linearized function gives an adequate representation of
the nonlinear function.'" For large values of ¢ Marquardt
demonstrates that the solution 06 in equation (2.6) rotates toward
the solution for this increment found by the gradient method. For

¢t = 0 we can show that we obtain the usual Gaussian estimate for the

vector of increments. Also it can be shown that equation (2.6) is

&
o %

the same as

d
o

= 0 from Levenberg's procedure for the special case
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when a; = a, T ... = aP = g from equation (2.2). For this case ¢
in equation (2.6) is equal to s'where w has been defined earlier.
Therefore during the iterative procedure small values of wc are
chosen when conditions are such that the Gauss-Newton method will
converge nicely, which is usually true in the later steps of
iteration.

The estimation of the parameters in a nonlinear regression
equation is usually initiated by reducing the nonlinear function to
a type of linear function. In the iterative procedures discussed
in the previdis patragraphs, this was acccmplished by a Taylor series
expansion of the nonlinear function about some preliminary estimate
of the vector of parameters. Since many physical laws which are
represented by nonlinear functions are derived from simple, mainly
linear, relationships between the function and its first and second
derivatives, Hartley [1948], Lipton and McGilchrist [1964], and
Wiggins [1960] have attempted to replace the original nonlinear
regression equations by equivalent linear finite difference
equations. Then they perform a least squares estimation procedure
on the set of linear equations.

As an example consider the regression function:

-62x
E(y) = b, - e (2.8)

which is generated by the first order differential equation

dE(y)
dx

= 6,(8; - E(¥)). (2.9)
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This differential equation is equivalent to the following difference

equation
—ezh
E(yyyy) = EG) = (0 - EGNA-e 7)) (2.10)
—ezxj

where E(yj) = el - e and xj+1 - xj = h for all j. In a more
general form the equation may be written as:

E(y, - E = aE(y.) + b. 2.11

(541 - BO,) = k() (2.11)

This is the type of difference equation considered by Hartley.
From a knowledge of summation of finite differences, equation "(2.11)
takes the form

E(yj) - E(yo) = aj’io E(yj,) + bxj + c (2.12)
where ¢ is a constant of summation. Hartley's "internal least
squares approach" may formally be described as follows:
(1) The tionlinear regression equation, which is the solution of a
linear differential equation, is replaced by an equivalent linear
finite difference equation.
(2) The observations yj are expressed as a linear function of the

j=-1

progressive sums I E(y.,.) and the independent variable xj,
j =0

by forming the progressive sums on the equivalent finite difference
equation and replacing E(yj) by yj.

(3) Finally, a least squares fit is made on this last linear




12
equation, from which estimates of the original parameters are
found.
Lipton and McGilchrist [1964] present a general method of
estimation for the parameters in the multiple exponential
regression function from an equivalent finite difference equation.

For the multiple exponential curve

=

E(yj) =a+ I Bipi , j=0,1,...,N-1, (2.13)
i=1

they
(1) Show that the following general finite difference equation is

capable of generating (2.13):

Cotie-15 V5 ¥ -2 U gaa-? +oo ¥ CE G )

+aG =0 (2.14)

where m > k and the G's are specified functions of the parameters.

(2) Substitute the observations y ) in (2.14).

3ok 50T By

(3) Suggest estimating the parameters by minimizing either of the

following expressions:

N-k-1 2

j—Zk <Fh+k—lyj+k.+ Gm+k—2yj+k-1 +...+ Goyj—m+1 + aG ) (2.15)
or

N-k-17 d

d_zk [ j*fk <Gm+k-lyj+k * OV j4k-1 Tt Co¥yomin

2
+aG>] . (2.16)
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They also indicate that several other nonlinear models may be
represented in the form (2.14).

Wiggins [1960] also presents an estimation procedure that
is based upon some of the concepts of finite differences. Moreover,
his procedure is also presented for simultaneous estimation for more
than one nonlinear equation. This procedure may be briefly
described as follows:

(1) Let yj, j=1,2,...,N, be a set of N observations.

(2) Let E(yj) be a function of the independent variable xj,
where xj+l - xj = h for all j.
dE(y)

(3) Assume that di" is expressable as a linear function of
dE(y)

E(y) and the parameters to be estimated. Then replace I by

Y4177 3-1

——————— =y, and E(y,) by y,.

%41 xj—l J h| ]

(4) TFit the linear equation which expresses uj as a linear
function of yj and the parameters by least squares.
Again this procedure is applicable to any physical situation that
may be described by means of a system of linear differential
equations with constant coefficients.

Besides the above papers that have been concerned with
the development of least squares or pseudo least squares
estimation procedures, there have been some related papers that

considered aspects of least squares estimation other than the
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estimation problem. One of these problems is concerned with
measuring the amount of departure from linearity by a nonlinear
regression model. This is a pertinent consideration since many of
the least squares techniques approximate a nonlinear function by a
truncated linear Taylor series expansion of the nonlinear function.
Beale [1960] has proposed a measure of nonlinearity given by:
af(xj;é) 2

~ P R
[f(xj;19)-f(xj;9)‘b§l(1eb_eb) —?ﬂi:——-]

1l
N[ ~ 1242
L 21 f(Xj;le)—f(Xj;e):] }

where 02 is the estimate of 02 = E(e?), i=1,2,...,N;

~

po
1

t M8
il =

13
8

t B

1
(2.17)

>

=1
~
~<
Cae
~
]

f(Xj;e); 6 is the least squares estimate of 6; and

6, 1 = 1,2,...,m, represent points in the neighborhood of é.
Beale concludes that the model is '"disastrously nonlinear in 6"
if N, > l/Fa(p,\)) while the linear approximation to the nonlinear
model is satisfactory if ﬁe < 0.0l/Fa(p,v) where Fa(p,v) is the
upper 1000% point of the F distribution with (p,v) degrees of
freedom and v is the degrees of freedom associated with the
estimate of 02. Although Beale only speaks of ;2 as being an
"adequate independent estimate' of 02 both Beale and Guttman and
Meeter [1965], who examine the validity and usefulness of this
measure of nonlinearity by means of numerical examples, propose
and use the following estimate of 02: ;2 = ? (yj—f(Xj;é))Z/(N-p)

- j=1
where 0 is the least squares estimate of 0.
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Other estimation procedures that are concerned with the
specific problem of estimating the parameters in the class of
regression models given by (1.1) are the partial totals technique
discussed by Cornell [1962] and the Spearman estimation procedure
as presented by Johnson and Brown [1961]. Both of these procedures
have limited their consideration to special members of the class
of models given by (1.1). More specifically the partial totals_
procedure has been limited to the case when n = 1 and the Spearman
estimation procedure has been limited to the case n =m =1 in
equation (1.1). For the special case n = m = 1 in (1.1) there
have been many estimation procedures presented for the estimation
of the exponential parameter and Speckman and Cornell {[1965]
outline for this case some of the more familiar estimation
techniques, i.e. maximum likelihood, least squares, weighted
least squares, and partial totals. After evaluating the above
procedures these authors conclude that the maximum likelihoo
and partial totalsmethods give similar results for small values of
N. Since the main contribution of this research has been the
generalization of the partial totals and Spearman estimation
procedures to the simultaneous consideration of several equations,
we will wait until Chapters 5 and 6 before giving the details of
these estimation techniques. The results of Speckman and Cornell
[1965], the simplicity of these two estimation schemes for the
simple exponential model, and the high efficiency (88%) of the

Spearman estimation procedure for the simple exponential model
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with binomial variation have provided a great deal of the

motivation for this research.

2.3 Simultaneous estimation schemes

Although there have been some papers written on the
problem of estimating the parameters in a set of regression
functions simultaneously, the papers have not considered the
particular situation covered by this research. Telser {1964] and
Zellner [1962] have presented simultaneous estimation schemes that
may be used when one is faced with a set of linear regression
equations each being a function of a different set of parameters.
Much of the estimation development in these papers is based on
Aitken's [1934] generalized least squares for linear equationms.
With respect to the problem of simultaneous estimation of the
parameters in a set of nonlinear regression equationms, there has
been very little written. Box and Draper [1965] have considered
the Bayesian estimation of common parameters from several responses
when the observed random variables of our regression model are
assumed to follow a multivariate normal distribution. In addition,
Turner, et. al. [1963] have considered this problem when the
covariance matrix for the error terms is assumed to be known to
within a constant multiplier. Turner's approach is based upon a
Taylor series expansion of each regression equation through the
linear terms about some preliminary estimates of the parameters,
and then an approach similar to that used by Telser [1964] or

Zellner [1962] is applied iteratively. Beauchamp and Cornell [1966]
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use a similar procedure for a system of nonlinear regression
equations in which some of the parameters may be common to more
than one of the regression equations; however, fewer assumptions
are made about the covariance matrix of the error terms. The
details of this simultaneous nonlinear estimation procedure are

included in Chapter 4.

2.4 Modeis

This research was initially motivated by investigations
reported in an article by Galambos and Cornell [1962] involving the
use of radioactive tracers in a biological experiment. Therefore
throughout this research we have attempted to formulate and
generalize our simultaneous estimation procedures with the ultimate
purpose in mind of applying them to the estimation of the parameters
used to describe tracer experiments. Sheppard [1962] has presented
one of the more complete discussions on the basic concepts of the
use of tracers beginning with a discussion of the elementary
principles of the tracer method. Sheppard then moves into a
discussion of tracer experiments in compartmental systems and the
problem of model building. Properties of these models will be
derived in Chapter 3 which will be useful in the development of
estimation procedures in later chapters. Sheppard also includes
an extensive bibliography in his book on tracer experiments.
Berman and Schoenfeld [1956] also give a good discussion of the
formulation of models for tracer experiments in steady state, and

consider the problem of estimating the constants that are inherent
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in the physical or biological experiment. Cornfield, et. al. [1960]
are also concerned with the problem of model building and estimation
as related to tracer experiments; however, they only consider one
equation at a time in their estimation process. Berman [1961]
gives a good example of the application of tracer experimentation
and model building to the thyroid system. A general discussion of

compartmental models will be given in this paper in Chapter 3.




III. MODELS TO BE CONSIDERED

3.1 General discussion of compartmental models

In the introduction to this research the statement was made
that there exist examples where a regression model such as that
given by equation (1.1) is used to describe a physical situation.
Two such examples that arise in experiments concerned with the use
of radioactive substances as tracer material are the mammillary
and catenary systems. Although a great deal of writing has been
done concerning the mathematical formulation of models for tracer
experiments, two of the better discussions on this subject are
those by Berman and Schoenfeld [1956] and Sheppard [1962]. The
basic rule of these formulations is to consider a system within
an organism as made up of a number of chemical states or sites of
a physiological substance. It is assumed that there are fixed
transition probabilities or turnover rates from one state or site
to another and the whole system is assumed to be in steady state.
Hence by introducing radioactive substances into the system we
are able to study the system "in vivo" without affecting the
turnover rates of the system. The system as a whole is quite
complicated but an adequate model for studying such processes
consists of a finite number of states or compartments with
turnover rates which are proportional to the amounts of material
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in the compartments. It is also assumed that the tracer material
mixes uniformly with its isotope and that its behavior reflects that
of the unlabeled substance. The concept of dividing a biological
system into a number of fixed compartments is merely an aid in
analysis, since the various states or sites contain finer structure.
However, the compartmental analysis does prove itself useful in
understanding some of the mechanics of the system.

The mammillary and catenary systems are particular examples
of compartmentalized systems in steady state and they may be
formally described by means of the following definitions:
Definition 3.1: The mammillary system involves n peripheral
compartments that have turnover rates with a central compartment
but no turnover between the n peripheral compartments.

Definition 3.2: The catenary system involves (n+l) compartments
that may be thought of as arranged in a chain-like manner where
each compartment has non-zero transition rates only with the
compartments adjacent to it.

For a detailed discussion of these systems one may refer to the
work by Sheppard [1962].

In order to show how a regression model such as that given
by equation (1.1) arises, we will derive the regression model for
the general (n+l)-compartmental problem and then give the
particular solutions for the mammillary and catenary systems.
Although the following derivations may be found elsewhere, they

are presented here for completeness. The observations will be taken
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at particular time values; therefore the independent quantity x

3

will represent a particular point in time. Since we will want to
consider the expected values of our observations as being
continuous functions of time, we will denote this by writing x in

place of x,, i.e. x denoting any arbitrary time point and x

j’

representing a particular fixed time point. The following

3

notation will be used:

E(Yi(x)) = the expected amount of labeled material in the
th .
i compartment at time Xx;
. . th
L the fractional amount of material in the s

. t
compartment flowing to the r h compartment per

unit time;

E(ni(p)) = the Laplace transform of E(Yi(x))

i E(Yi(x))e‘pxdx.
0

From the discussion in the preceding paragraphs, the following set
of differential equations is formed to describe the general

(nt+1l)-compartmental problem:

dE(Yi(x)) n+l n+l
— " -E(Y, (x)) ril Tyt i’il 1B - (D) (3.1)
r#i i7#1

for i = 1,2,...,nt+l.
From our knowledge of Laplace transforms we may write the

system of equations (3.1) as follows:
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(9+111)E(n1(p)) - Ty, E(ny(0)) - ... ‘Tl,n+1E(”ﬁ+i(p)) = E(y,(0))
=T51E(M; (0)) T(D+T22)E(n2(o))- e -T2,n+lE(nn+l(p)) T E(y,(0))

T, 15 O =Tog B0 = el ot LB (0))=ECy, ; (0))

(3.2)
n+l
where T = z Trs® Using matrix notation we may write (3.2) as:
r=1
r#s ‘l’
(pI + ©)E(n(p)) = E(Y(0)) (3.3)

where E(Y(0)) = <F(Yl(0)),---,E(Yn+1(0))>T, E(n(p)) =

_ <E(n1(p)) e ,E(nn+1(o))>T,

T is the (n+l)x (n+l) matrix of coefficients of (3.2) with p = 0,
and I is an (n+l)X (n+l) identity matrix. From matrix algebra we
know that

T
{Ars(p), r,s=1,2,...,n+1}
IpI + TI

L+ 1)t = (3.4)

where Ars(p) is the rth row and sth column cofactor of (pI + T)

and |pI + TI represents the determinant of (pI + t). From these

results we may write .
n+l Ai‘i(p)
EgG) = I g B0 (3.5)

Denote the roots of |pI + Tl = 0 by -A since this

R LR |
is a polynomial of (n+l)St degree in p. If the A's are distinct

then
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n+l g

_ ik
where
aye = By Rl _ oy - (3.6)

k
Finding the inverse Laplace transform of E(ni(p)), the solutions for
E(Yi(x)) are given by:

n+l —Akx
E(Yi(x)) = I a,e , 1=1,2,...,n+1, (3.7)

k=1 1K

We now combine the above results into the following theorem:
Theorem 3.1: For the general (n+l)-compartmental tracer experiment
where transfer of labeled material is allowed between any two
compartments, the solutions for the expected amount of labeled
material in the ith compartment at time x is given by (3.7) if the
roots of the equation |pI + Tl = 0, given by -xl,—xz,...,-xn+l,
are distinct. The constants uik are given by (3.6).

From the definition of the characteristic roots of 1, we

note that Xl,kz,...,k are equal to the characteristic roots of T.

n+l
The assumption that the A's are distinct was made in order to
arrive at a unique regression model. Otherwise, from a knowledge
of Laplace transforms we would have a different model for each

number of multiple roots and also for each different multiplicity

of each multiple root. Therefore all of our discussion pertaining

to regression models of the form given by (1.1) or (3.7) will be

made under the assumption that the Ak's are distinct whether this

assumption is explicitly stated or not.
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In addition, the estimation procedures developed in Chapters 5 and 6
have been derived specifically for models of the form given by
(1.1) and (3.7). If it does happen that multiple characteristic
roots of t exist, the compartmental model may be modified by a
procedure similar to that which is contained in the discussion
pertaining to Figure 3.2 in order to eliminate the possibility of
multiple roots.

Throughout the above discussion we have assumed that the
Trs'S are all > 0, and Berman and Schoenfeld [1956] have shown that

n+l
this restriction, along with Trr = sil Tor? is enough to ensure that
s#r
the Ak's have positive real parts, and that pure imaginary
characteristic roots of T are impossible.

For meny of the tracer experiments that one will be faced
with, a fixed amount of tracer material will be present. Therefore
there are only n independent regression equations since
n+l

I E(Y,(x)) must be equal to the fixed amount of labeled material
i=1  *
present for all valuves of x. We are now able to prove the following
theorem which will be useful in the presentation of the estimation
procedures in Chapters 5 and 6:
Theorem 3.2: For the mammillary and catenary systems, the number

of exponential terms in each regression equation will be equal to

the number of independent regression equations for the case when

a fixed amount of tracer material is injected into the system.
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Proof: For the general (n+l)-compartment mammillary system, the

matrix t will take the form:

0 "
11 0 A W S |

0 122 0 teT —Tz,n+1
T =

O 0 N

’ T33 3,0+l

“Totl,1 To+l,2  'ntl,3  ccc n+l,ntl

Totl,1 O 0 RS IS | \

0 Tn+1,2 0 -T2,n+l

0 0 Ta+l, 3 *oc T3 n4l

STl T Tnbl,2 1,3 'Lkt Tnnt1). (3.8a)

By a number of elementary row and column™ operations on the matrix

7, it may be reduced to the following equivalent matrix:

. \
/ Tn+1,l 0 0 ... O 0 \
0 Tn+1,2 0 ... O 0 \
0 0 Tn+l,3 .. 0O 0
0 0 0 Tn+1,n 0 .
0 0 0 I 0 (3.8b)

which has rank n and this rank is equal to the rank of t. From
equation (3.7) we note that the number of exponential terms in each
regression equation of our model is determined by the number of

nonzero characteristic roots of the matrix t. The number of
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nonzero characteristic roots of 1 is equal to the rank of 1 (see
Hohn [1964], page 280) and from (3.8b) we note that the rank of Tt
is equal to n. Since we are assuming that a fixed amount of tracer
material is present in the system, n is also the number of
independent regression equations and our conclusion follows for
the general mammillary system.

For the general (n+l)-compartment catenary system the matrix

7 is given by:

// Ty, Ty, O 0 ... 0 0 0 \\
Ty, TyptTay Ty O eee O 0 0 \
0 -T3y T23+T43 “Tag 0 0 ?
\ 0 0 0 0 .- —Tn,n—l Tn—l,n+Tn+l,n _Tn,n+1;
\‘0 0 0 0 ... O “Tatl,n Tn’n+l![.(3.9a)
By a number of elementary row and column operations T can be
reduced to the following equivalent diagonal matrix of rank n:
//121 0 0o ... O o\\
]/" 0 T4y O e O 0
5 0 0 43 0 4]
| .
! .
\ 0 0 0 Tn+1,n 0 !
\0 0 0 ... O of . (3.9b)

Again we use the fact that the number of nonzero characteristic

roots of 1 is equal to the rank of 1, i.e., n. Hence we conclude
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that the regression model used to describe the general (nt+l)-
compartment catenary system when a fixed amount of tracer material
is present will be a sét of n independent regression equations each
being a linear combination of the same n exponential terms. This
completes the proof of the theorem.

From Theorem 3.1 we can now state the following obvious
corollary without proof:

Corollary 3.3: The regression models used to describe the general
(n+l)-compartment mammillary and catenary systems when a fixed amount
of tracer material is present in these systems, are members of the
class of regression models given by equation (1.1) with m = n.

In addition, for the case when the amount of tracer material
in the system is known and fixed, we can divide each of the equations
in (3.7) by this constant and have a system of regression equations
still of the form given by (1.1) in terms of a new quantity which
represents the proportion of labeled material in the compartments
at a time x. Besides the two very general classes of models
contained within the mammillary and catenary systems discussed
above, there also 2xist other compartmental models that are neither
mammillary nor catenary in nature, but they still give rise to a
regression model contained within the class of models of equation
(1.1) for m = n. One such example is given in Figure 3.1 where
the four numbered boxes represent certain chemical states or
physiological sites, the arrows represent the direction of certain

changes or transitions that take place, and the rrs's represent
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the nonzero transition or turnover rates. Figure 3.1 is drawn only
as a visual aid and is not meant to be an exact representation of
the physical situation. From this figure we note that this
example is neither mammillary nor catenary in nature. For this

example the matrix t is given by:

/}21+T41 712 “T14 0
.- T "12¥732 0 0
0 kY T13 0
“T,, 0 0 0 (3.10)
I T32

N

4\2 Tli//// 3
T 12 e
/T4
1 : 5 4

Fig. 3.1--Compartmental model which is neither mammillary
nor catenary in nature.

which can be shown to have rank three. The number of
characteristic roots of 1 is also equal to three and hence the
number of exponential terms in each regression equation is equal
to three. Therefore if a fixed amount of tracer material is
introduced into the system uf Figure 3.1, then there are three
independent regression equations and each equation will involve a
linear combination of three exponmential terms. Again we see that

this example is a member of the class of regression models of
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equation (1.1).

In some practical situations it may happen that even with
a fixed amount of tracer material present in the compartmental
system that it is impossible to determine the amount of tracer
material in each compartment. One possible way to circumvent this
dilemma is to propose a simplified model where some of the
unobservable compartments have been replaced by a single compartment.
One possible example is given in Figure 3.2(a) where we assume
that the observations made on compartments 2 and 3 are not easily

resolved. For this model the matrix t has rank 2, therefore

=l & t1ped =2

12
1 T

41
TP s i S
(a) (b)

Fig. 3.2--Simplification of a compartmental model

each of the four regression equations will be a linear combination
of the same two exponential terms. If neither compartment 2

nor 3 is observable then this more complex model might be replaced
by the simpler model given in Figure 3.2(b). Compartment 2~
represents the combining together of the original compartments
numbered 2 and 3 into a single compartment. By means of this

modification, for the case when a fixed amount of labeled or tracer
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material is present, our regression model may be represented by a
system of two independent regression equations each being a linear
combination of two exponential terms. The above discussed
modifications are similar to the ones proposed by Berman [1961]
who was concerned with the application of tracer experiments to
the thyroid system.

Another auxiliary problem that should be considered is the
problem that pertains to relating the coefficients and exponential .
parameters of the compartmental models, which are considered here,
to the turnover rates or transition probabilities of the original
system. If we are considering a general (nt+l)-compartment system
and if we assume that nothing is known about some of the Trs's,
then we may use the following equation derived by Berman and
Schoenfeld [1956] to relate the coefficients and exponential

parameters of equation (3.7) to the turnover rates or transition

probabilities:
-1
T = oAo (3.11)

where o is an (nt+l) x (n+l) matrix of the @ from (3.7) and A

is an (n+l) x (n+l) diagonal matrix with diagonal elements Ak.

The estimates of the elements of T would then be found by .
substituting the estimates of the coefficients and exponential

parameters into o and A, respectively. If some of the Trs's are

known, such as the case for the mammillary and catenary systems

when some of the Trs's are equal to zero, them it is easily seen
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that certain restrictions are imposed upon the other parameters
of our regression model. 1In Section III of the paper by Berman
and Schoenfeld they propose for this situation a method of
estimating the nonzero elements of T by means of transformations
of the matrix o in (3.11) which preserve the constraints on the
elements of a. This approach then determines a whole class of
models which satisfy the initial constraints. Another approach
would be to substitute the estimated regression equations into the
original differential equations giving us a system of linear
equations in the Trs's after equating the coefficients of like
exponential terms to each other. Since many observations are made
on each equation, usually we would have more equations linear in
the Trs's than there are nonzero Trs's. Therefore the usual least
squares procedure on the complete set of linear equations could be

used to determine estimates of the nonzero Trs'

s. Although the
main concern of the following chapters will be the estimation of
parameters in the regression models of equations (1.1) and (3.7),
we see that it is possible to obtain estimates of the turnover
rates and transition probabilities from the estimates of the
coefficients and exponential parameters of these equations.
3.2 Distributional assumptions concerning
the random variables Eij
So far in our discussion no assumptions have been made

about the random variables €4 that appear in equations (1.1)

and (1.2). In this section we will state the general
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distributional assumptions to be used for all of the estimation
techniques to be developed and then we will list the various
modifications that will be used for particular estimation schemes.
The following notation will be needed before the assumptions

concerning the €., are stated:

i]

1) €

T
g% = (Eil’siz""’eiN) for i = 1,2,...,n;

- T .
2) Cxj = (slj,ezj,...,enj) for j

1,2,...,N;

T T T .,T
3) e, = (61*’€2*""’En*) which will be an nN x 1 vector;

T T T

T
4) € (e*l,s*z,...,e*n) which also will be an nN x 1 vector.

For each value of i and j we assume that E(eij) = 0 and for
each value of i we assume that the N components of Ei* are
generated by independent random drawings from a given distribution

T

. T
t €. .€ = € €. . = .
with E( 135 1% ) Dii and E( PPN ) Dii , where Di s a

i i
diagonal matrix with positive diagonal elements and Dii' is a
diagonal matrix with nonzero diagonal elements for i # i” and

i,i* = 1,2,...,n. Furthermore, we assume that the set of N random
vectors S*j are independent vectors drawn from a given multivariate
distribution. These assumptions allow for correlation between
observations on different equations when they are made for the same
value of the independent variable Xj. In Chapters 5 and 6 as well
as in the examples considered in this research, the dimension of

X is 1x1 and X is the independent variable time. Therefore for

this case these assumptions would mean that we allow for correlation
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between observations made at the same point in time.

In Chapter 4 where a generalized least squares procedure
is developed and in Chapter 5 where a generalized partial totals
estimation procedure is developed, much of the work will be done
40 = oii‘I for

i,i~=1,2,...,n and i # i~ where 0 < Oy €% " ® <0< o,

and I is an N x N identity matrix. This will also imply that

under the assumption that Dii = oiiI and Di

E(eel) = 1 £x)o,, where I is an N X N identity matrix, ®
represents the Kromecker or direct product of two square matrices,

and 0, = {o, .3i,i" = 1,2,...,n}. However, a discussion will be

x = 94y
given to a consideration of the modifications that arise when the
general distributional assumptions given above are satisfied. Also
in Chapter 4 we will alter some of the above restrictions to allow
for complete independence among the observations and, in addition,
we will allow E(eeT) = gl where 0 < 0 < and I is an nN X nN

identity matrix. The altering of the assumptions is done in order

»

to investigate the simplifications that arise. In Chapter 6 where
a generalization to the Spearman estimation procedure is presented,
we develop the procedure under the general distributional
assumptions given earlier.

Soyfar we have not discussed the specific form of the
distribution function of the random variables eij’ and for the
development of the estimation procedures no specific form is
required although it is assumed that E(eij) = 0 for all i and j.

However, with the above stated assumptions we are able to
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investigate some properties of our estimators in the following
cases:
1) The vectors E*j’ j=1,2,...,N, each have a multivariate
normal distribution.
2) The vectors a*j, j =1,2,...,N, are each distributed according
to the multinomial distribution.

It is quite obvious that we have not considered all
possible distributions for the random variables Eij' However, by
investigating the estimation procedures under the normality and
multinomial assumptions we have considered distributions of
practical importance. Moreover, under certain conditions realized
in practice, distributions such as the Poisson, binomial, and
multinomial tend to a normal distribution. Therefore a normal
distribution may be a very good approximation even when it is not
the true distribution of the random variables in our model.

For example, when we are measuring the proportion of
radioactive tracer substance present at a site at a particular
time, these measurements will usually be a ratio of random
variables with the denominator related to the initial count and
the numerator related to the count at the particular time of
observation. If we could think of the denominator as being a
constant and the numerator as being a Poisson or truncated Poisson
random variable, then the distribution of the ratio could be
approximated by a normal distribution when the mean of the Poisson

random variable in the numerator and the denominator
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relative tc the mean of the numerator are both large. This is true
since a Poisson distribution can be closely approximated by a normal
distribution when the mean of the Poisson distribution is large.
The last requirement concerning the relative magnitude of the
denominator and the mean of the numerator will mean that the
probability of an observation being greater thar one is small.
For those cases where our observations might be considered
as a ratio of two randomw variables, a great deal of unwieldiness ‘
arises in the determination of the exact distribution of such a
ratio as can be seen by referring to the work by Curtiss [1941],
Donahue [1964], Fieller [1932]), Geary [1930], Gurland [1948], and
Merrill [1928]. Fowevar, there are some results that would appear
to justify the use of a normal approximation to the distribution
of our observations. For example, in radioactive tracer experiments
various adjustments are made on the observations to account for the
radioactive decay cud this in turn will Zead to uon—integral values.
More specifically, let an observation y be represented by the
ratio yl/yz, where the distributions of vy, and y, are given by
N(ul, ci) and N(uz, cg), respectively. The correlation coefficient
of Y1 and ¥y will be denoted by p. Merrill [1928], through the .
use of graphs and tables, demonstrates the approximate normal
distribution of y under the iollowing cornditioms:
1) The coefficient of variation {(c.v.) of Yo is small.
% 9 "% %1% "i 2
2) The quantity <r - p-ﬁ—> /(-*E - 2p-u——r + = > is small.
2 ¥ Uy 172

Wy
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The first condition would imply that the standard deviation of Yy
is much smaller than the mean of Yos and this condition is
obviously satisfied for the example considered earlier when Yo
is a Poisson random variable with a large mean. It can be shown

that the second condition could also be satisfied when p is small

c.v. of y
and the ratio ?;:7—75??;_ is small. For those situations where our
WV, 1

observations denote the proportion of radioactive tracer present at
a site at a particular time, then the above conditions could be
satisfied if we thought of our observation as being a ratio of
independent Poisson random variables each with a large mean such
that the mean of the denominator is much larger than the mean of
the numerator, which will mean that ratios greater than one are
unlikely. Hence the results of Merrill confirm the reasonableness
of a normality assumption in many practical situations.

Since we had mentioned earlier that we would consider the
case where our observed random variables would follow a
multinomial distribution, now we want to demonstrate how such a
situation could arise in an experimental situation. Consider the
case where we have n independent Pcisson random variables

Zl’ZZ""’Zn with parameters K PEERETL I respectively. Let

A
zl,zz,...,zn represent the values that our respective n
independent Poisson random variables take on, then for the situation

where we assume that zl-F2:2+...+zn remains fixed, the conditional

distribution of - Zl,'Zz,...,Zn follows the multinomial

distribution given by:
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21 % %n
1
(zl+zz+...+zn). S L

1 1 f
21.22....Zn. Kzl KZ2 <“n

where k = K1+K2+...+Kn. The above result can be shown by a direct
generalization of the results given by Birnbaum [1954] and Bross
[1954]. Therefore for the case when the sum of our observed
independent Poisson random variables remains constant, the joint
conditional distribution of these random variables is given by the
appropriate multinomial distribution. As zl+zz+...+zn becomes
large, the multinomial distribution tends to an (n-1)-dimension
multivariate normal distribution, hence making not only the

multinomial but the normal model a reasonable approximation to the

actual situation.



IV. GENERALIZED LEAST SQUARES ESTIMATION

4.1 Introduction

In this chapter a generalized least squares estimation
procedure, which will be used for the estimation of the parameters
in equation (1.2), will be developed and evaluated. At the preseat
time, most of the least squares methods of estimation in nonlinear
regression cquations appear to have been restricted to the situation
where only one regression equation is present, as the literature
cited in Chapter 2 demonstrates. In addition to the articles
presented in Chapter 2, one might refer to the articles by Hartley
and Booker [1965], Stevens. [1951], and Turner et. al. [1961] for a
demonstration of this fact. With respect to estimation procedures
that attempt to estimate the parameters present in a set of
regression equations simultaneously, Turner et. al. [1963] present
a generalized least squares estimation procedure for a set of
nonlinear regression equations when the covariance matrix of the
eij terms of (1.2) is assumed to be known to within a constant
multiplier. However it appears that most of the recent work has
been done with a set of linear regression equations, as a reference
to the articles by Telser [1964] and Zellner [1962] can show. Hence

after outlining in Section 4.2 the nonlinear least squares technique

for the case when n = 1 from equation (1.2), we will develop in this

38
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chapter a geﬁéraiized least squares estimation prOcedufe to be used
in estimating a set of parameters simuitaneously in & set of
nonlinear regression equations. The results given in this chapter
except for a portion of Section 4.4 are also presented in the
article by Beauchamp and Cornell [1966], which was written during
the time when research was being carried out for this dissertatiomn.

For the sake of completeness we will repeat these results here,

4.2 Single equation least squares estimation

Since some of the techniques used in single equation least
squares estimation will be carried over into our generalized least
squares procedure discussed in Section 4.3, we will now outline an
iterative least squares estimation technique as we indicated in
Section 2.2, Since we will present the case here when n = 1 from
equation (1.2) and for this case i = 1 only, the subscript i will be
dropped in order to simplify the notation.

Let yj represent a value that the random variable Yj has
taken on for the particular value of the independent variable Xj and
let Yys yz,'...,yN be a set of N independent observations drawn at
random from a given population, so that E(Yj) = f(Xj;e) where f is a
continuous differentiable function, ins an h X 1 vector of
independent quantities assumed to be known, and 6 is a p *x 1 vector
of constant parameters to be estimated. The estimation of the

elements of the vector 8 by least squares techniques involves the

minimization of the expression:
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N 2
6(8) = I <yj - £(X,;0) > . (4.1)
j=1 J

If,b=1,2,...,p, represents an element of the vector 6, then in

b’
order to determine the value of 6 that minimizes ¢(6), we must solve
the following set of equationms:

ap(e ,

29(0) _ 0, b =1,2,...,p. (4.2)

aeb

If £ is linear in the elements of 6, then (4.2) is a set of linear
equations in the elements of 6 and may be easily solved for the

least squares estimator of 6, denoted by 8? For the case when f is

a nonlinear function, the iterative technique presented here, which
will be referred to as the Gaussian iterative technique, involves the
expansion of the function f(Xj;e) in a Taylor series about some
preliminary value of 6, say bé’ and truncating after the linear

terms in (Gb—oal;)° By using this approximation we are minimizing

the expression:

N 2
- ‘ 2 (1) _ 2 (») \
~ - A~ _ . ~ (b) - .a-g.(x ; 8)
where on_ (Hb—oeb), ofj = f(Xj,oe), ofj 50 o’ for

b=1,2,...,p and j = 1,2,...,N. The Gaussian method would solve

the new set of equatioms:

*
2% -0, b=1,2,.0.,p, (4.4)

~

aoab
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for odb's, and then find a new estimate of the 6, 's by taking

b
leb = oeb + on for b = 1,2,...,p. The new vector le would be
substituted in the place of oe and a new set of increments le would

be calculated. This process would be continued until the increments

~

become sufficiently small.

Hartley [1961] considers the problem of convergence, which
we mentioned in Section 2.2, and presents some assumptions and
modifications to the Gauss-Newton estimation procedure. This
modified Gauss-Newton method, which has the merit of guaranteed
convergence under the assumptions to be stated below, may be briefly
described as follows:

1) The first step of the modified procedure involves the
determination of the vector 13 by the usual Gaussian method
described previously. However in the place of the vector

18 = 08 + 13, Hartley uses the vector 05 + vig where v is a scalar
and 0 < v <1,

2) The vector StV § is substituted into @(6) giving us

1

N A - 2
- . 4.5
j§1<y3‘ £(X 3,0 + v 10) > : (4.5)

which is considered as a function of v and minimized over the range

from 0 to 1, giving the value of v denoted by v Hartley

in®
suggests the following method to approximate the value Voin °

(1) Calculate ¢( ), ¢( 0 + 2 18), and ¢( 0 + 18); (ii) détermine
the value of v for which the parabola through these three points

attains its minimum; and (iii) denote this value of v by vgin and
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take this as an approximation to Vin® This parabola may be found

by using the LeGrange interpolation formula.

3) The vector 8+ v , 16, or in most practical situations the

* ”~ ~
vector 09 + vk o 16, is substituted in the place of oe and the

above procedure is repeated until the vector of increments is
sufficiently small. It should be noted that the desirable

properties of this estimation  procedure are given in terms of Voin

. . *
lnstead of its approximation viin®

Sufficient conditions for the convergence of the estimators
found by this modified procedure to the solution of equations (4.2)
using Viin
1) The first and second derivatives of £(X;6) with respect to the

as defined above are given as follows:

elements of & are continuous functions of the elements of 8 for

all X.
P

oo,

2) For any non-trivial set of Y, b=1,2,...,p, with I
b=1
N,/ p 2
z o f(b) (x.;e)> >0 (4.6)
4=1 “b=1 J

for the observed vectors X, and for all 8 in a bounded convex set S

3

of the parameter space.
3) 1t is possible to find a vector Qe in the interior of S such that
m_inf

$(.8) < § , where § = 117

The above three assumptions on the function £(X;6) might

$(0) and S is the complement of S.

appear to be restrictive assumptions as stated. However, the first
assumption merely allows us to define the set of equations as given

by (4.3) and (4.4). The second assumption allows us to determine




43

the solutions to equations (4.4) and is equivalent to the full
rank criterion in a linear least squares problem. For a regression
model specified as a linear combination of exponentials the first
assumption is obviously true, and if the exponential parameters are
distinct then the second assumption is obviously true. As has been
pointed out by Hartley in his article, the third assumption is
particularly difficult to verify if the surface represented by ¢(8)
has numerous local minima and/or maxima and/or saddle points. For
this process to converge to the absolute minimum of ¢(6), the third
assumption states that we must begin our estimation procedure in a
region that contains the absolute minima and no local minima, This
may be difficult to verify, but in some situations it is possible to
search the parameter space at a wide grid in order to locate an
initial estimate og in the region S. However, if the parameter
space is unbounded or of high dimensionality then the grid search
may be unfeasible; and, in addition, the grid search implies further
assumptions about the smoothness of &, hence of f£.

It should be noted that for the regression model given by
(1.2) with n = 1 that the least squares estimator for b is
equivalent.to the maximum likelihood estimator, when it is assumed
that the random variables éj are independent with a N(O,oz)

distribution. This can be easily seen since maximizing the

likelihood function
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L= 11: -1 exp <- L (y.-f(x »e))2> 4.7)
=1 Voo 2

is equivalent to minimizing the expression

N 2
¢(0) = El<yj—f(xj;e)> . (4.8)
j=

4,3 Presentation and evaluation of estimation procedure

Referring back to equation (1.2) we note that there are nN
responses yij’ i.e. N independent vectors y*j = (ylj’YZj""’Ynj)T
of observations for each value of the fixed input vector Xj' The
elements of Xj are assumed to be known. Also from equation (1.2) we
note that we want the same set of fixed input vectors for each
regression equation or equivalently for each value of i. When X is
a scalar and represents the independent variable time, this
restriction means that we observe each of the n equations at the
same N time values. This restriction will be relaxed in a later
section of this chapter.

Before presenting the actual steps of this estimation
procedure we will define the following notation:

~ S S T)T
y*j = (ylj ’y2j""’ynj s ¥ T y*l Y*z s Y*N ’

T
fay = <f1(Xj;9) £, (%;36) ... fn(xj;e)> ,

T T

T —
f*z s e f*N) 9 Where Xj - (le, Xj2,...,xjm) .




45
With the above notation we may write equation (1.2) in the following

matrix form:
y=f+e (4.9)

where ¢ has been defined earlier in Section 3.2. Generalizing from
equation (2.1), we now want to determine a vector

~

8 = (61, 62,...,9p)T which will minimize
o= (y-6)T 2 “Ly-£) (4.10)

when evaluated at 6 = 8 for Q = E(esT) =18 0, as defined in
Section 3.2, The generalized least squares estimation procecure to
be presented will be given first for the case when 2 is assumed to
be known and then it will be extended to the case when Q is unknown,

The first step in the estimation procedure will be to expand
each one of the n regression equations in a Taylor series through
the linear terms about a vector of preliminary estimates of the

elements of é, say

~

A s AT (4.11)
B - (oel’ 092,...,09p)

o

to give
£ £+ £°6 (4.12)
O o O

where in addition to the definitions already given we have
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T
T T
of = (of*l of*Z v of*N) ’
~ ‘, ~ T
of*j = (fl(xj;oe) fZ(Xj;oe) fn(X ;oe)>

for j = 1,2,...,N,
(T (et ,
- (T T e (i )

of  ( 03X.)
of3 = '{ aeb » Tow corresponds to i =1,2,...,n3

column to b = 1,2,...,p }-, and 03 = 8 —05. For the
case when Q is assumed to be known we can use Hartley's modified
Gauss-Newton procedure to calculate a vector of least squares
estimates for the elements of 6 in our nonlinear model. In order
to keep from any ambiquity arising, the generalized form of the
assumptions which were originally given in Section 4.2 are stated:
1) The first and second derivatives of any fi(X;e), i=1,2,...,n,
with respect to the eb, b=1,2,...,p, are assumed to be continuous
functions of the elements of 6 for all vectors X,,j = 1,2,...,N.

A
2) The following inequality

N P of (X 6))
L X
5 (i =5

is assumed to hold for 1 = 1,2,...,n, for any non-trivial set u

with I u% > 0, for the observed vectors Xj, and for all 6 in a
b=1

bounded convex set S of the parameter space.

3) A vector 9 exists in the interior of S such that @(oe) <d
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lim inf
S

sipgnificance of these assumptions in a practical situation, one can

where = $(0) and S is the complement of S. For the
refer to the discussion in Section 4.2,
Hartley's modified procedure starts with the usual weighted

least squares estimate 06 of the increment vector (e—oe),'where

P T 4-1 =1 AT -1

06 = [(of ) I Y) (of )} [(of )T Q (y of):I . (4.13)

Then the vector 05 + v 06 is considered where 0 < v < 1, and is .
substituted for 6 in ¢. Then ¢ is considered as a function of v and

this is denoted by @(66 + v 06). The value of v which minimizes

S -

¢(°5 +v 03) is denoted Sy Voin and the vector is oe + Voin 06 is
substituted in the place of 06. This process is continued until the
vector of increments becomes sufficiently small. The following
theorem makes it possible for us to appeal to the results already
proved by Hartley concerning the property of guaranteed convergence:
Theorem 4.1: Under assumptions 1 - 3 given above for the case when
Q is known, the results proved by Hartley for the single nonlinear
regression model carry over to the regression model given by
equation (4.9), i.e. the iterative procedure converges and provided
no two stationary points of ¢ yield identical values it converges .
to the minimum of ¢.

Proof: Since @ = I (¥) o,, and o,y is positive definite, we know
that @1 = 1 ® o*;l and 2! is also positive definite (see Hohn
[1964]). Therefore Q-l may be written as UT U where U is a

nonsingular matrix, and ¢ may be written as ZT Z where Z = U(y-f),
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i.e. ¢ may be written as a sum of squared deviations. Hence the
problem has now been reduced to the same problem as that considered
by Hartley in which he proved that this estimation procedure had
the property of guaranteed convergence to the minimum of ¢ when the
assumptions are satisfied.

For the case when Q is unknown we follow an approach similar
to the one presented by Zellner [13962]. Recalling from Chapter 3
that @ = I (¥) o,,, the problem here will be to specify estimates

for the elements of the matrix g, In order to do this we fit each

*.
of the nonlinear regression equations separately and compute a

o (1)

least squares estimate 6 of 68 for the ith equation,

i=1,2,...,n. Then the estimates of the elements of the matrix

O4%» Which form a matrix denoted by o,,, are given by

A AT A
O - = €ix Eou/N (4.14)

-~ A ~ A A

_ T _ _ A1)
where ei* = (Eil €ip +o eiN) and Eij = yij fi(Xj,B ) for

i,i“-=1,2,...,n and j = 1,2,...,N. The following lemma

demonstrates that 011’ is a consistent estimator of oii,:

Lemma 4.2: Under the assumptions of Hartley's modified Gauss-Newton

procedure (or any other procedure that will lead to an estimate of 8
N

that minimizes I <yij-fi(xj;e)>2 for any i) and the assumption
j=1

of normality of the distribution of the vectors e ,,, the estimators

~

o.,. are consistent estimators of o,,.
ii ii

o (1)

Proof: From Theorem 4.1 ©

where 1,1 = 1,2,...,n.

is a least squares estimate of 6, and
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~(1)

gince € is normally distributed, 6 is the maximum likelihood

{%
estimator of & for the 1 th equation and therefore it is a consistent
estimator of 6. This last statement can be demonstrated by showing
that the normal density function satisfies the three conditions
given by Cramér ([1946]}, page 5C0) concerning the asymptotic

properties of maximum likelihood estimators. In the demonstration

of these gufficient conditions we use the fact that the vectors ¢

i*
are independeat and identically distributed. Next ccnsider
N
- 1 [ o)
o...=%3 L |(y (X,G))+(f( 30) - £, (X,;0 )):l
ii N j=1 13771 3
§(19)
-[(yi.j-fi,c 1)) + (£,.(X,30) =~ £,.(X,;6 ))].

Using Theorem 5 and Example 4.3 from Pratt [1959] along with

Khintchine's theorem (see CramCr [1946], page 254) we can show that

-

o,.. converges in probability to ¢ Hence from the definiticn

ii-®

. 1s a consistent estimator of ¢

ii

of a consistent estimator, ;ii 11~
The following theorem demonstrates some of the desirable

asymptotic results when the previously defined estimators for the

elements of @ are used for the case when  is unknown.

Theorem 4.3: Under the assumptions of Lemma 4.2 the estimator of @

found by minimizing é = (y-f)T 5_1(y-f) will converge in probability

to the estimator found by minimizing ¢ and will be a consistent

estimator of 9.

Proof: Let o, =-{011,, i,i7 = l,2,...,n} and let Q@ =1 (:) (A



50
then:

o -0 = (y-f)T Efl(y--f) - (y-f)T 9_1(y-f)

= (y-6) (@ -0 (g-)

and from Lemma 4.2 this converges in probability to zero. Therefore
the minimum of 5 converges in probability to the minimum of ¢ and
also the estimator of 6 found by minimizing ; will converge in
probability to the estimator found by minimizing ¢, Moreover under

the assumption that the vectors € %« €ach have the same multivariate

i
normal distribution, the estimator of 0 found by minimizing ¢ will
correspond to the maximum likelihood estimator. Hence the estimator
of 6 found by minimizing ¢ will converge in probability to the

maximum likelihood estimator and thereby is a consistent estimator

of 0 by using a similar type of discussion as given in Lemma 4.2.

4,4 Modifications to the estimation procedure

We now want to present some modifications to the above
generalized least squares estimation procedure that will make it
more generally applicable. The situation we consider arises when
observations are not available on each equation for each value of

the independent variable X. Suppose that we have N, observations

i
on the ith equation and that all of the Ni are not necessarily
N .
equal. Let N, = [ Ni and let N equal the total number of different
i=1

input vectors Xj for all n equations. 1In general Ni < N, however

Ni = N when the same set of input vectors is used on each of the n
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» and €, . as

*3 A

given earlier apply now as if observations were made for each on all

regression equations. Let the definitions of y*j, £

N of the Xj input vectors. For each value of i define the new
vector ygj which is obtained from the vector y*j by deleting those
elements from y*j for which there are no observations. The vector
agj and the matrices fgj and QD are defined similarly., Other

D D

quantities are constructed from yzj, E*j’ f*j’ and QD just as they

were from y*j, € g f*j’ and @ Section 4.3, and these quantities are

]
also labeled with the superscript D. Corresponding to equation
(4.10), when a different set of input vectors is used on some of the

n regression equations we have:

p,-1 , D D .
¥ = P27 @)t P-£D). (4.16)
In order to calculate the estimates of the elements 021, of
QD, the Ni observations on equation i are used to find the least
. , o . 2D(i) -~
squares estimator of &, denoted by 9 . Then
“D D ,T ,°D

°D
To compute ¢

11- for i # 17, let Nii’ equal the number of

observations on equations i and i” that have the same Xj input

vectors, where we require N i > 0. The Nii’ observations on each

i
of the equations i and i” are then used to compute separate single
equation least squares estimates of 6 denoted by GD(ii‘) and OD(i i{

respectively.
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Then
‘b _ ,D T ,°D
9i5- = ey W) (g0 ) /N, (4.18)
i i
vhere eg % 1s computed using eD(ii’), e?, % 1s computed using
i~ i
D(i”7)) . . .
6 i’, and each is a vector with N elements. Next an iterative

ii~

procedure for estimating 6 is started by computing § using equation
(4.13) after setting of‘ = of‘D, Q= QD, and y = yD. In order for

the limiting properties of these modified estimators to hold we also

—> @ gnd N, ,_ > « for each i and

assume that as Nf —_— o, Ni 14

i # 4.

At this point we will demonstrate the modifications that
arise when some of the distributional assumptions are altered.
First we will assume that @ = 0 I where 0 < 0 < = and I is an
aN x nN identity matrix, i.e. the vector ¢ is assumed to be made up
of independent and identically distributed random variables. To

obtain the least squares estimator of 6 for this case we minimize:

n N
= I I (y
i=1 j=1

X

157 E Ky

From an investigation of (4.19) we see that this expression is
similar to the expression to be minimized for the single nonlinear
regression equation problem. Therefore all of the procedures,
properties, and conditions carry over to this case from the single

equation case. Obviously under the assumpticn of normally

e))z. (4.19)
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distributed Eij for all i and j, the least squares estimator of 0
found from minimizing (4.19) is equivalent to the maximum likelihood

estimator of 6.

Next let us consider the case where Q@ is a diagonal matrix

given by:
011 0 ees 0
1® | ° 92 ... ° = Q (4.20)
0 0 ces O
nn

where I is an N x N identity matrix. To obtain the generalized

least squares estimator of 6 for this case we minimize

o-6)F a7t (-6

o
[

2
2 g (Yij'fi(xj’e))
(o)
i=1 j=1 i .

(4.21)

For the situation where the elements 0,4 are assumed to be known,

i

the estimation procedure will be the same as those previously
discussed. For the case where the elements 044 are unknown, then we
obtain consistent estimators of Uii by the same procedure as we
discussed earlier using the observations on the ith equation. The
estimation of 0 is simplified for this case since we do not have to

estimate elements of the formo,.. for i # i”.

ii

For the case when E(c .) is not independent of j and

13 €13

these covariances are unknown, then instead of allowing only one
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observation on each equation at each value of X, we must have more

h|

than one observation on each equation at each value of X, in order

3

to estimate the necessary variances and covariances. Let n

ij

represent the number of observations made on the ith equation for

the input vector Xj’ and let all of the nij be equal, say to £. Then

these £ observations would be used to obtain an estimator of E(e

13)

in a manner similar to that used in equation (4.17) to obtain an

estimator of o, . Similarly we find estimators of E(e L)

ii
E(eij ei,j), and E(eij ei’j'

consistent estimators now provided for the covariance matrix, we

j
) where i # i” and j # j°. With

proceed to estimate the vector 6 by the same method we described
earlier.
Another example, similar to one discussed earlier, except

that multiple observations at each value of X, on each equation

3

would not necessarily be required, would be the case when

j) = fi(xj;e)’ and E(e ) = E(e ,) E(e .) =0 fer

135173 *13%173
i’i‘ = 192’°°°’n9 j:j‘ = 122"",N9 i * i” ’ and j # j)' This 1s a
more general example of equations (4.20) and (4.21), and it can be

shown for this particular case that ¢ reduces to

N (y,.-f. (X ,e))
B 5 B ) (4.22)

i=1 j=1 £,(X:30)

©
]
n ™3

This situation might arise when our random variables where related
to a Poisson distributed random variable. Although some of the

above cases become much more involved than the originally discussed
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case, these modifications do show that it is possible to apply this
generalized least squares estimation technique to a variety of

classes of distributions for the vector €.




V. A GENERALIZED PARTIAL TOTALS ESTIMATION PROCEDURE

5.1 Introduction

As we indicated in Chapters 1 and 3 there are numerous
examples of experimental situations in the fields of biology,
chemistry, and physics that yield data which are easily described
by equations of the form (1.1). Cornell [1956, 1962] develops an
estimation procedure based on the concept of partial totals that
may be used in estimating the parameters in equation (1.1) for the
case n = 1. In Section 5.2 we will outline this partial totals
estimation procedure for the sake of completeness, since the
results presented there will be used in succeeding sectioms.

In Chapter 3 we demonstrated for the (n+l)-compartment
mammillary and catenary models that the n independent equations
describing the experimental situation are each a iinear combination
of the same n exponential terms, that is, for equation (1.1) that
m = n in this situation. Section 5.3 will be devoted to the
development and description of a generalized partial totals
estimation procedure for the regression model of the type given by
(1.1) for the case when n = m and the values of the independent
variable xj are equally spaced. In Section 5.5 certain alternatives
will be suggested for the cases when some of the observations are

not taken at equally spaced values of xj. In Section 5.4 some

56
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theorems will be presented concerning some of the properties of the
estimators found by this generalized estimation procedure.
5.2 Single equation partial totals
estimation

The results in this section are contained in the work by
Cornell [1956, 1962]; however, we repeat them here since some of
the results will be needed for the generalized procedure to be
presented in the next section. In this section we will again .
suppress the subscript 1. Let Yj be an observable random variable

where

-A

m kx .
Y.= % ae ~J4 ey = E(Yj) + € (5.1)

j’
for j = 0,1,2,...,2Mn-1 where M is a positive integer. We will

assume that xj = hj for all j where h is a positive constant, so

X, = 0 and xj+l - xj = h, Next we form the following partial
totals:
qM-1 gM-1 m —Akhj
L = L E(Yj) = z z e , (5.2a)
1 j=(q¢-1M j=(q-1)M k=1
qM-1  -A hj
for q = 1,2,...,2m. Since z e is a geometric series, .
j=(q-1)M
we may now write (5.2a) as:
m -\, h(q-1)M -\, bM
;= 5 ae © Qe © ). (5.2b)
T k=1 -\ B :
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Let Al’AZ""’Am represent the m elementary symmetric functions of

-thM —Ath —thM
e ,e yeessl , 1.e. Ar is the sum of all possible

: -A, hM
distinct products of the e taken r at a time. If we let

AO = 1, then we can show that the following set of equations is

satisfied:

mtl
5 (_1)2m+1—r A

r=1

mhl-r Z:q+1:' =0 (5.3

for q = 0,1,...,m-1.
We note that (5.3) is a set of m equations which are linear

in the m unknowns Al,Az,...,Am. Therefore we next set the

quantities Eq equal to the corresponding observed partial totals
qM-1

S = z yj for q = 1,2,.+.,2m where y, represents the
1 3=(a-1m | ]

observed value of the r.v. Yj’ and we solve the resulting set of
linear equations corresponding to (5.3). The solutions to this
set of linear equations give us estimators Lr of the symmetric
functions Ar’ r=1,2,...,m. Since the Lr estimate the symmetric

-\, hM -A, hM
functions of e , estimators of the quantities e may be

found by obtaining the m roots of the polynomial equation:

wm - L wm—1 + L wm_2

1 . et DT L = 0. (5.4)

Let the roots of this equation be denoted by WysWos e oo W . Then

= - i 1nw, for

the estimators of the A K v w

k are given by A

k=1,2,...,m.
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To obtain estimators of the parameters a EPL the

1"
following subset of equation (5.2b) is solved by elementary

~ -

methods for Apsecesa :

m
m. -AhGe-Dn T
S = % ace =, q=12,...,m. (5.5)
1 k=1 l-e Mkh

Cornell [1956, 1962] also develops the partial totals

estimation procedure for the following regression model:

m —Akhj
Y. =a + I ae + ¢, 5.6
30 g K ] ¢-®
for j = 0,1,...,(2o+1)M - 1. For this case we form the differences
m -\ h(g-1)M  -A hM -A,h
I -1z = T ae k (1-e k )2/(l—e k ) (5.7)
q qt+l k
k=1
for q =

1,2,...,2mtl. After substituting Sq - Sq+1 for Zq - £q+l’

the solution for the estimators Lr of Ar is the same in terms of

the differences Sq - Sq+1 as that given by the solutions of (5.3)

in terms of the Sq substituted in the place of ﬂq. The estimators

of o -»a  are found by substituting Sq and A, in place of

l,az,.. K

Zq and Ak respectively in the first m equations of (5.7).

Finally, an estimator of a  may be found by substituting Sl’ Ak,

~

~

and a, for I A, , and a

X 1° A » respectively, in the following

k

equation:

Ko oin - (5.8)
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Moreover, Cornell also proves that the estimators of the
parameters in (5.1) and (5.6) found by this partial totals approach
are consistent estimators under the following assumptions:
1) The random variables Ej are independent for all values of j.
2) The random variables ej are identically distributed for all
values of j in the same group or partial total.
3) The domain of the independent variable xj = hj remains constant
for each group or partial total as M > », i.e. as M + » we must have ‘
h + 0 but Mh remaining constant. Finally, the asymptotic normality
of the distributions of these partial totals estimators is
demonstrated by Cornell.
5.3 Description and development of the

generalized partial totals
estimation procedure

Although this estimation procedure was motivated by the
consideration of the regression equations that arise when we are
concerned with tracer experiments, this section will present the
estimation technique for two more general cases; then by a
reference to Theorems 3.1 and 3.2 of Chapter 3, we see that these
models relate to the tracer experiment problem of interest. The
two more general cases may be described as follows: .

Case I: The regression model is given by:
e Xd e, (5.9)

for i = 1,2,...,n and j = 0,1,...,(n+1)M-1, where the observable

random variable Yij takes on values denoted by yij'
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Case II: The regression model is given by:

n -\ X

- L
Yij =0y +k§1aike + Eij’ (5.10)

for i = 1,2,...,n and j = 0,1,...,(n+2)M-1, where the observable
random variable Yij takes on values denoted by yij'

In the above two cases we are assuming that n and M are positive
integers, the coefficients . are real numbers, and the exponents
Ak are distinct positive real numbers. Since we will want to take
our observations at equally spaced values of the independent

variable xj, we will assume that x, = hj where h is a positive

3
constant.

The estimation of the exponential parameters will involve
the application of a partial totals approach similar to that
discussed by Cornell [1956, 1962]. First we will consider the
estimation of the exponential parameters for the regression model
given by Case I. The first step will imvolve the grouping of the
observations from each equation into (n+l) groups each containing

M observations, and then the formulation of the following partial

totals:
qM-1 qM-1 n —Akhj qM-1
) Y = L I a, e + X €
. ik i
j=@-Du T 5=(g-DM k=1 j=(q-1)m 13
qM-1
=i+ X €, . (5.11)
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gM-1
for 1 = 1,2,...,n and q = 1,2,...,n+l where Zi = I  E(Y,.).
1 j=(q-1)M

Now for each value of i we can use the same steps that were used to
derive equation (5.3) to show that the following equation is

satisfied:

AZ .. -A

nZi1 T Mailio A2k 0 (5.12)

.t (-1)“1\02i a1 =
k]

for 1 = 1,2,...,n where Ar, r=12,...,n, are the elementary

A, bhM
symmetric functionsof e k , i1.e. they equal the sum of all
—
-A, hM
possible products of the terms e taken r at a time. In

addition, we define Ao = 1. Therefore, since i = 1,2,...,n, in
equation (5.12) we have n equations in the n unknowns Ar' Hence

qM-1
by substituting S, = z

for Zi we may easily solve for
j=(q-1M d

Vi3

estimators of Ar which will be denoted by Lr' From these estimators
of the elementary symmetric functions we may now obtain estimators

—AkhM
of e for k = 1,2,...,n. Using the same properties of

elementary symmetric functions that we used to derive equation

-\, hM
(5.4), the estimators of e k , k=1,2,...,n, are obtained by

finding the n roots of the polynomial equation:

n n-1 n-2 n _
w - Lw + Low -e.ot+ (-1) L = 0. (5.13)
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Let the roots of (5.13) be denoted by WisWoseeesW . Then the

. : -1
estimators of )‘k are given by )‘k =<—§/ 1n Wis

For Case II given by equation (5.10) we group the ,

k=1,2,...,n.

observations into (n+2) groups each containing M observations,

and then form the following partial totals: Siq = Siq - Si,q+l

for 1 = 1,2,...,n and q = 1,2,...,n+l, where the partial totals
gqM-1

) y,.. For each S there is a corresponding
i i
1 j=(¢-1)M 1q

S

Ziq = ziq - Ei,q+l’ and we can show that the following equation
is satisfied by the Ziq:
g » - n »~ —
Anzil An—lziZ + An—2213 coot (-1) oni,n+l = 0, (5.14)

i=1,2,...,n, i.e., this set of equations is the same as (5.12)

»

iq

r =0,1,2,...,n, are the same as those defined earlier. We now

except that I 's have been substituted for Ziq's. The Ar’

proceed as in Case I to obtain estimators of the exponential

-

iq

's instead of the Siq's, i=1,2,...,n

parameters using the S
and q = 1,2,...,n+1.
At this point we want to estimate the coefficients in the
set of equations (5.9). To obtain these estimators we will
substitute the estimators of Ak’ found by the partial totals
procedure described above and denoted by ;k’ into our set of n
independent equations and use a least squares procedure to estimate

the unknown linear coefficients. We will proceed as if there did

not exist any functional relationships between the exponential
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parameters and the linear coefficients. If the exact relatiomn is
known between the exponential parameters and the linear coefficients
and if the linear coefficients are completely specified by the
exponential parameters, then the values of the estimators of the
exponential parameters can be substituted into these relatiomns
giving us estimates of tﬁe linear coefficients. If the exact
relation is known between the exponential parameters and the linear
coefficients but the linear coefficients are not completely
specified by the exponential parameters, then the values of the
estimators of the exponential parameters can be substituted into
these relations giving us a set of regression equations for the
remaining parameters. If the system of equations is linear then
we can proceed in the same manner as described below, and if the
system of regression equations is nonlinear then we can use an
iterative technique such as that described in Chapter 4.

In order to reduce the amount of space needed to write
the necessary equations, we will use matrix notation. Therefore
we will need to define the following vectors and matrices for

i=12,...,n:

T T T T . . T _ .
Yar = pasYpus oo a¥pa) » where vy, = (yio’yil"'"yi,(n+l)M-1)’

T T T

T T
% = (al*’GZ*""’an*) , where a,

i%x (ail’aiZ""’uin);

=]
|

T T T

T T
(el*,eZ*,...,sn*) , where ¢

ix (eio’eil"'"ei,(n+l)M-1);

€ xx
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and
1 1 1
-x.h -A.h -2 h
2 n
( e e ves €
-2X.h -2\, h -2Xx h
Z = e 1 e 2 e n

;—[(n+1)M-1]Alh LB —[@DN-11A

Using the above definitions we may now write the complete set of

equations given by (5.9) as follows:
(5.15)

where DZ is an [n(n+1)M] x n2 matrix with Z matrices along its

diagonal, 1i.e.,

D, =10 Z...0
0 0 ... 2

where the 0's in the above matrix are matrices of the appropriate
dimensions with only zeros as elements.

Let @ be the covariance matrix of the vector e,, which
we discussed in Section 3.2. If we knew the elements of Q
and the true values of the exponential parameters, then the
usual weighted least squares estimator of the vector a,, would

be taken as:

PN

-1 -1, T -1
Gy = (D207 D) T8Ny, ) (5.16)
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Since, in reality, we do not know the elements of the matrix @ or
the true values of the exponential parameters, we will substitute
our partial totals estimators of the exponential parameters into
the ith regression equation and obtain the usual least squares

estimators of the linear parameters in the vector % by

S ST -10T
0= (2°2) 2y,

-~

where Z is the matrix Z with the partial totals estimators
substituted in the place of the unknown parameter values. Doing

this for each value of 1 = 1,2,...,n, we find the estimators of

€ % by

Eix = Yyx Z L

From Section 5.4 we note that we will take Q = Z(Z)I where

= {oii,;i,i’ =1,2,...,n} is a positive definite matrix. The

estimators of 0y~ are given by

i

~ AT -~

044 = €5x6q-4/ (@FDY, (5.17.1)

for 1,i“ = 1,2,...,n. Our estimator of Q is found by substituting

these estimators into I, giving us I, and then taking Q = Z@I.

~

Using Q we will have the following expression for the estimator of

~

the vector Ogg’

-~
A

Q

To-1 (-1, To-1 |
L= (0 D) TR Ty, ). (5.17)

* Z Z Z
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For the regression model specified by equation (5.10),which
we have designated as Case II, we will need to define the following

new set of vectors and matrices:

. _ ,.T_.T  _.T.T T
Vi = OLaYous s ea¥pad s vhere v, = (550595100 +5Y5 (uey-1)3

al, = (a’T a‘T a‘T)T where a’T = (0, 50 15e0es0, )
%% 1%>72%° e LI i* io’ il’ *>“in’?
. _ LT T JILT LT )
€ rx (el*’€2*""’€n*) , where €lx = (Eio’eil’”"Ei,(n+2)M+l)’ ‘
and

1 1 1 cee 1

-A -A -2

1 e 1 e 2 . os e n
g o -23, -2, -21_

1 e e e

[P

e-[(n+2)ﬁ-1]hxl e-[(n+2)ﬁ-1]hx2 . e-[(n+2)ﬁ-1]hxn

o o

From the above definitions we can now write the complete set of

equations given by (5.10) as follows:

Yar = Dyo0hp + €4x (5.18)

where DZ' is an [n(n+2)M x n(n+l)] matrix with Z° matrices along

its diagonal, i.e. ‘
z° 0...0
DZ’ = O Z .. 0
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where 0's have the same meaning as given for Case I.
Using a similar type of reasoning as was applied in

Case I, we find an estimator of the vector O g n

of linear
parameters to be given by the following expression:

~
A

o= or o7l ) hel o7y, (5.19)
yAS z

7”
where the ~'s have the same meaning here as they had in Case I.
5.4 Some properties of the generalized
partial totals estimators
During the development of the generalized estimation
procedure presented in Section 5.3, the only assumption that we
used concerning the random variables Eij was the assumption that

E(e,.) = 0 for all i and j. However, before we can investigate

Eij

some of the properties of these estimators we must make some more

ij' These

specific assumptions about the random variables €

assumptions may be stated as follows:

1) For each value of i and j we have E(eij) = 0 and
2

E(e..) = 0., where 0 < 0,, < o,
ij ii ii

2) For each value of 1,i”,j, and j” with i # 1" and j # j~ we
= ;. = e s ” o =0.-/ h
have E(eijeij,) E(sijei i ) 0 and E(elJe1 J) 4i- vhere
-0 < Uii' < oo,
At this point we will prove the Theorem 5.1 given below,

in order to demonstrate the consistency of the estimators of the

exponential parameters for Case I. After proving this theorem
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we will indicate the minor changes to be made in the proof in
order to demonstrate the consistency of the estimators for the

exponential parameters for Case II.

~

Theorem 5.1: Let Al,kz,...,An be the generalized partial totals

estimators of the parameters Al,Az,...,An in the regression model
given by (5.9), which we have designated as Case I. These
estimators of the exponential parameters are consistent estimators
under the following assumptions:

1) For each value of 1 = 1,2,...,n, the random variables Eij’
j=0,1,...,(n+1)M-1, are uncorrelated with E(eij) = 0.

2) For each value of i and q the random variables eij associated

with the corresponding observations yij in Siq as given in

Section 5.3 have constant variance.

3) For each value of i and q the domain of the independent

variable is of constant length J for Siq where 1 = 1,2,...,n

and q = 1,2,...,n+l.

let o be the n X n matrix
th

of these coefficients, where aik is the element in the i row

and kth column for i, k = 1,2,...,n, and assume that the

4) For the linear coefficients aik’

determinant of a, |G', is unequal to zero.
Proof: From the substitution of the Siq for the Eiq in the set of
equations displayed in (5.12), we note that the estimators Lr of

the Ar’ r=1,2,...,n, are found by Cramer's rule as the ratio

of the following two determinants:




70
L = lPr|/|P| , r=1,2,...,n, (5.20a)

where P is an n X n matrix whose (i,q)th element is (—l)q—lsiq

for i, q = 1,2,...,n. The n x n matrix Pr is the same as P except

that the elements in the (n—r+1)th column are replaced by the

elements (—l)n—lS

. . Now since each S, is the sum of M
i,n+l iq
observations, we may replace each Siq byigiq, where g&q = Siq/M’
and still have the same estimators for Lr' Therefore let
L = IRr|/|R| , r=1,2,...,n, (5.20b)

where Rr and R are respectively the same as Pr and P except with

the S, 's substituted for the S, 's. Next let us write S, as
iq iq iq

follows:
q}i—l qM_l n - h j qI‘I—l
S = = z y,. = = z I a.,e + = z €,..
k M i
(5.21a)

We will allow M+=. However, as stated in the third assumption of
our theorem, we will specify that the M observations included in
the qth partial total for a particular equation are made for the

values of j given by
(-1)3, (q-D)J + 2/, (=13 + 2T, I -1y

Therefore, with this specification, equation (5.21a) may be

written as

-1 n —Aij/M L M-l
X z aike +-ﬁ z ei.. (5.21b)
j=(q-1)M k=1 j=(q-1)M

|
41

iq
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From the first and second assumptions of our theorem, the last term
in (5.21b) is the mean of M uncorrelated random variables each with
the same variance. By an application of the Tchebycheff theorem
given in Cramer ([1946], page 253), this term will converge in

probability to E(eij) = 0,

qM-1 n -A JJ/M

11 n qJ -A, X
M—l-lfooflf z e y J/M='Jl' 2o e *ax
j=(q-1)M k=1 k=1 (q-1}J
n o =X, (g-1)J -x, J
=2 3 —A—i-‘ie k (1-e 5. (5.22)
k=1 "k

From Slutsky's theorem (see Cramér [1946], page 255) we now have

—

that Siq converges in probability to the above constant, which will

be denoted by Wi , 1.e.

q
- n a, -, (g-1)J -\, J
5. v, =% 5 ko K (1-e ) (5.23a)
iq iq J k= Ak

as M ->» yhere ;édenotes convergence in probability.

Now in order to complete the demonstration of ik Eb'xk
as M= for k = 1,2,...,n, we will need to go through an argument
similar to the one given by Cornell [1956] for one regression
equation., From equation (5.20b) we note that the estimators Lr
are merely ratios of sums of products of the g;q' Therefore
erl and |R| are continuous functions of the g;q’ and Lr will be
continuous at the point ¥, ., where Yon is defined as that point

where giq = Wiq for all i and q, provided |rR| # 0 at ¥,,. We
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may write ¥, as follows:

iq
n -Ak(q—l)J
wiq = kiluike (5.23b)
On —AkJ
where u,, = =—— (l-e ) for i, k = 1,2,...,nand q = 1,2,...,n+l.
ik Jlk

For all i and k we note that LI # 0. Now at the point ¥,  the
(i,q)th element of R is given by (5.23b) and therefore at this

point R may be written as the following product:

=A.J -A, (n-1)J
fu u u 1 e 1 e 1
11 12 In g —lz(n—l)J
UW = u u . u 1 e 2 ves €
21 .22 .2n . . .
. . . P U | Z—An(n—l)J
u u 1 e ® ... e . (5.24)
nl n2 nn

The matrix W is a Vandermonde matrix (see Hohn [1964], page 70)

‘AkJ "Ak,J
and therefore |W| = 1 (e - e ). Moreover, it can be shown
k>k~
Ay J
P n (l,.e Ak )
that |U| = |a] T 3 From the fourth assumption of our
k= k

theorem we note that |R| at the point Yoes is unequal to zero,
which implies that Lr, r=1,2,...,n, is continuous in a
neighborhood of y,, . Now since WisWoseee,W are the n roots of
an nth degree polynomial with coefficients Lr’ then WysWos e oW
will be continuous in a neighborhood of Y, Since the roots of a
polynomial are continuous functions of the coefficients. Now the
estimators ik are continuous functions of the roots Wy s

k=1,2,...,n. Therefore we have that the estimators of
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Xk, k=1,2,...,n, are continuous in a neighborhood of Y.
Now that we have demonstrated that the estimators
ik’ k=1,2,...,n, are continuous in a neighborhood of Y _,, we
may apply a result proved by Slutsky (see Sverdrup [1952], page 6)

to conclude that if Ak = Ak, then Ak converges in

S, =Y,
1g 1q

probability to Xk with S, =¥, for all i and q. So in order to
1q 1q

complete the demonstration that the Ak’ k=1,2,...,n, are
consistent we must show that Ak = Ak at the point Y,  for

k=1,2,...,n. Let Ciq = E(giq). Then from equations (5.21b)
and (5.22) we note that Ciq »> Wiq as M»». From equation (5.12)
we can see that Lr = Ar, r=1,2,...,n, at the point Siq = ciq
for all 1 and q. This implies that the roots of the polynomial

equation
e e a2 o D=0 (5.25)
1 2 n
—AkhM —AkJ
would be e = e , k=1,2,...,n. Therefore we have that

A

A = s
K Ak at the point Siq

Ciq for all i and q. Using the above

conclusions we have

Ak = lim Ak = Ak’ (5.26)
~§ =y Moo g =z
iq iq iq ’iq
where S, =V, and S, = £, are to hold for all i and q. Hence
iq iq iq iq

~

Ak converges in probability to Xk for k=1,2,...,n, and Ak is by

definition a consistent estimator of Ak. This completes the proof
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of Theorem 5.1.
For the regression model designated as Case II by equation
(5.10) we have the following theorem:

~ A

Theorem 5.2: Let Al,kz,...,in be the generalized partial totals
estimators of the parameters Al,xz,...,xn in the regression model
given by (5.10), which we have designated as Case II. These
estimators of the exponential parameters are consistent estimators
under the following assumptions:

1) For each value of i = 1,2,...,n, the random variables Eij’

j=0,1,2,...,(n+2)M~1, are uncorrelated with E(e_,,) = O.

i3

2) For each value of i and q the random variables eij associated
with the corresponding observations yij in Siq’ as given in
Section 5.3, have constant variance,
3) For each value of i and q, the domain of the independent
variable is of constant length J for Siq where i = 1,2,...,n and
q=12,...,nt+2.
4) For the linear coefficients LI i, k=1,2,...,n, let a be
the n X n matrix of these coefficients, where aik is the element
in the ith row and kth column, and assume that the determinant
of a, lal, is unequal to zero.

Since the proof of this theorem will be similar to the
proof of Theorem 5.2, we will merely indicate those points where
changes need to be made. In order to show that the estimators

of the exponential parameters for Case II are also consistent,

we will need the following expression:
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A (-1)J  -AJ
1. _=. »1 %k Tk K'\2 _ .
M Siq = siq P 3 = lk e (1-e )" = ?iq (5.27)

M

fori=1,2,...,nand q = 1,2,...,n+l as M»», With this expressioh
we will need to show that |R”|, i.e. the determinant of R with its
elements §;q replaced bylgiq, is unequal to zero at the point ¥ .
At the point Y[, the determinant of R” may be written as the
product |U’||W| where the matrix W is the same as was defined in
the proof of Theorem 5.1 and

Med 2

n
o} = lof n 3=t (5.28)
k=1 M

Therefore using the assumptions of our theorem and going through
the same continuity argument that was used for Case I, we conclude
that the estimators of the exponential parameters for Case II are
also consistent.

Before we demonstrate the consistency of the estimators of
the linear parameters for Cases I and II, we will need to prove
the following lemma.

Lemma 5.3: Let ; = (;1,...,;n)T be a vector of consistent
estimators of the elements of the vector a = (al,az,...,an)T.
Let g = G(a) be a jointly continuous function of the elfments of
the vector a, such that g -b ; 0. Then B - b 3 0 and g is a
consistent estimator of b, where ﬂ is equal to the function
G(;), i.e. G(a) with ; substituted in the place of a.

~

Proof: Since a is a vector of consistent estimators of a, then we
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know that ;k - a ; 0 for k = 1,2,...,n. Since G(a) is jointly
continuous in the elements of a, we may apply the results proved
by Pratt ([1959],pages 551,552) to conclude that G(;) - G(a) ; 0.

From our hypothesis we also have that b = b = G(a) - b ; 0,

therefore

A
~

b-b=0Ga) - Ga) +Ga) -b p O
since both portions of the sum tend in probability to zero. Ilence l; ‘
is a consistent estimator of b.
If the exponential parameters of our regression model are
known and the random variables Eij are assumed to be normally
distributed, then the estimators of the linear parameters given
by equation (5.16) and the corresponding equation for Case II are
maximum likelihood estimators of these parameters. The conditions
given by Cramér ([1946], page 500) are satisfied by the normal
density function and therefore the asymptotic properties of
maximum likelihood estimators demonstrated by Cramér hold for this
case. In particular, the maximum likelihood estimators converge
in probability to the true values of the parameters when the
conditions are satisfied. Hence by the use of Lemma 5.3 along .
with Theorems 5.1 and 5.2 we may prove the following theorem:
Theorem 5.4: Let the following assumptions be satisfied:
1) The assumptions of Theorem 5.1 (or 5.2) are satisfied.
2) The random variables Eij are normal}y distributed.

~

3) The elements of the vector a,, (or a,,) in equation (5.16)
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(or (5.19)) are continuous functionms.
Then the estimators of the linear parameters given by equation
(5.16) (or(5.19)) are consistent estimators of the linear
parameters in our regression model.

Now that we have established the consistency of our
generalized partial totals estimators, we will investigate the
limiting distribution of the exponential estimators and then we
will derive an expression for the asymptotic efficiency of these
estimators. Before presenting the detailed discussion of this
distribution theory, we will introduce some notation that will be
used in the development given below. When we have two arbitrary
vectors a = (al,az,...,an)T and b = (bl,bz,...,bn)T, then by

|a] we mean the vector (|al|,|a2|,...,|an|)T, by a < b we mean

a, < bi for all i, by ;iz awe mean the vector
/lim a; lim a, lim an\T
\N»m N P UNse ) Since the following results will

hold for both Cases I and II with obvious modifications, the
details of the derivations will be presented only for Case I with
merely the conclusions for Case II being shown.

Theorem 5.5: Let i represent the n x 1 vector of generalized
partial totals estimators for the exponential parameters given
by equation (5.9), where each ik’ k=1,2,...,n, is a function
of the g;q’ i=1,2,...,n and q = 1,2,...,ntl. If each ik
possesses continuous second order derivatives of every kind with

respect to the Eiq in the neighborhood |§iq-v iql < & for 6§ > 0
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where i = 1,2,...,n and q = 1,2,...,n+l, and, in addition, if the
distributional assumptions concerning the random variables eij
stated at the beginning of Section 5.4 and Theorem 5.1 are
satisfied, then the limiting distribution of /Q(i—x*), where A,

-~

represents the vector A with thelgiq replaced by the ¥ q for all

i
i and q in each of the elements Ak’ is a multivariate normal
distribution with mean vector given by the zero vector and

covariance matrix given by: FQFT where Q = ME(Z%.EE.),

M-1
; = —l- z € € = (e € S e
*° Mj'_'o *j’ *j lj’ l,j"'M’ b 1,j+nM’ zj)---,
€ AL ERS )T and
2,34nM’ "7 703 "7 T, Anl”
Bkl l axl ]
k% k* n,n wx=Yan
F = : .
A I
n l n l
3-§ - a_s- - i
11 S, =Yuu n,ntl S,=Y,, | - (5.29)

Proof: By a consideration of the vectors E*j defined above for
j=0,1,...,M-1 and from the distributional assumptions that we
have made about the random variables Eij for i = 1,2,...,n

and j = 0,1,...,(n+1)M~1, we note that the vectors €*j are
independent and identically distributed with zero mean vector and

T . e
covariance matrix E(e*je*j,) = Z(:)I for all j, i~ = 0,1,...,M-1
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where I = {o i=1,2,...,n, j =1,2,...,n}, I is an (n+l)x(nt+l)

ij’
identity matrix, and (:) represents the Kronecker or direct product

M-1

of two square matrices. Let €,. == £ ¢

% M . x5 Then by an

applicatior of a form of the multivariate central limit theorem

(see Anderson [1958], page 74), we conclude that /ﬁ'E;. has a

limiting multivariate normal distribution with zero mean vector
and 2(:)1 as covariance matrix.

Next let us define the vectors
= = = = - = = T

= (Syqe55) 14105910 95 e ,snl,...,sn,nﬂ) ;
Con = E(g**); and

w
|

T

¥ ) . Now

wr = Qe ¥y ¥ i Yoo Y on

S ; ¥,x 35 M=, as we demonstrated in the proof of Theorem 5.1.
From the definition of our regression model and the above

definitions we have:
(S, ¥y = (T + M ey o

We want to show that ;iz /H(c**—w**) = 0, which would imply from
the limiting distribution theorem given in Cramér ([1946]), page
254) that the limiting distribution of /ﬁ(g**—v**) is the same as
the limiting distribution of M €4-» Damely, a multivariate normal
distribution with mean vector zero and covariance matrix Z(:)I.
From the definitions of ;iq and wiq given above and in the

proof of Theorem 5.1, we have
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-2, J
n -\, (g-1)J k
Az -w)=/ﬁz[laek Qe )
iq iq k=1 M ik ka/M
(1-e )
L % A (eI A J
-I% e (1-e )
k
-2, J
n eI NI [ 3 M(-e K7 /My
=™ I a,e (1-e )
ey 1K NI /n
A, (1-e M
-2 J
n A @I AT [ IA M(L-e K/,
= I a8 (1-e )[ ] > 0 (5.30a)
k=1

-\, J
Ay (1-e k /M)/ﬁ

as Ms», since by several applications of L'Hopital's rule

-2, J
k™ /M
1im Jkk—M(l-e )
Moo

—— = 0. (5.30b)
M, (1-e KT/My

lim Y NP
Hence ,° /ﬁ(;**-w**) = 0 and VM(S,,-¥,,) has a limiting
multivariate normal distribution with mean vector zero and
covariance matrix Z(E)I. Now let Z ., = M(E;*—w**) and expand
each member of A in a Taylor's series about the point 5;* = Yo

giving us
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Y
. 2
A=A, +MTF 2,
1 ale
+ (2M) R 1
14,1759 9514°%17q" 5, =¥, 4 zwlZ**
azxn T
i lirgr = = 1 > (5.31)
1,q,i",q" "¢ * % 35, 95, .

- _ 2
iq i7q I wnZ**

where Iwk]_i | for k = 1,2,...,n. Now let E represent the event
that IE;*-W**l < 6§ is true for arbitrary § > O; E the negation

of E; and ElﬂE2 the intersection of E1 and E2. Then

PIH(A-A)<x} = PLA(-A ) <x)NE} + PL(A(A-1,) <ONED. (5.32a)
For any event El we note that

P(EE) < P(E) < 2 P(Ziq > M5%), (5.33a)
i,q

where the last inequality follows from the definition of E. From

a form of Tchebycheff's theorem (see Cramér [1946], page 182) we

have:
2
E(Z.,)
z p(z? _>_M62) < ;q
i,q i,q M
var @) ()
= 3 5 + 5 . (5.33b)

i,q $ 8
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Since giq is the mean of M independent random variables each with
O,
the same variance 9540 then Var(Siq) = —%l + 0 as M»», Likewise

we know from the proof of Theorem 5.1 that Ciq > wiq as M3,

Hence

2 2

: {Var (S;q)  (Cyq7¥q
i,q 8 8

2
) .
+ }= o(1l) or P(ElnE) = 0(1)»0 (5.33c)

as M*» from the definition of o0(l) (see Cramér [1946], page 122).

Therefore

POMOA-A)<x} = BLOHA-L)SONE} + o(1). (5.32b)

From the hypothesis of our theorem, we are assuming that the

A

functions Ak possess continuous second order derivatives of every
kind in the neighborhood f§**-w**|_i 8. Therefore we may also
conclude that these derivatives are bounded, i.e. there exists a

constant C such that

azxk 1
— _ - <C (5.34)
35, %55-q- Sax~Yantnil “Zyy

for all i, q, i“, q°, and k. Hence for each k we have
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1 27
: M’z oz ? M | 1
. . . i i’'q" .= .= a 2
i,9,1%,q 38:4%17q- SasxYaxtM "2y
1
- 2
2
<Ml = |ziq| . (5.35)
i,q

From equation (5.35) we may now write:

< 2 e I g { - 1 [
P{[(Fz**+ o (ifqlziql) 1>ix_'ﬂ EJ_<_P (YM(A-2 ) <x) nEj

< 2 .
_<_P{[<Fz**— = (z Iziql) 1>ix:lnﬁ} (5.36)

1,q

where 1 is an n x 1 vector with each element equal to one. From

equation (5.32b) we may write

P{[( FZ, + > (I |z, |)21> ix:]ﬂEl + o(1)
** 2/M i,q 4 J
< P{/ﬁ(;\—k*)_{x} <

2 =
p{[(r«*z - (zz, D 1>_<_XJOE} +o0(1) . (5.37)
** 2/ i,q 1q -

We have already found the limiting distribution of Z,,, and we want

to show that —— ( L |z |)21 p 0 as Ms=, Consider

2/M i,q 1q




(2 (|ziql)2) 1 \
P{ 1.3 > e} =p{(z 0[S, ~¥, D% > M
M i,q | 9 g7 2 ¢ J
_ B(( £ (|5, -¥, DHM
= P{( z (|s, -¥ h?) 38—}1 i,9 4 4 , (5.38
i,q 1q 'iq A = € )

where the last inequality holds from Tchebycheff's theorem. Next

consider

2

»/ﬁ}':(’s"iq—-wiq)2 = /M Var S, + M(z. )

iq 1q-wiq
944 M
=TT/ + /ﬁ(;iq-wiq)(;iq-wiq) >0 (5.39)
as M+~ by using equation (5.30a). Then consider the term

1
—iZ
/ﬁ! iq

llz iq'' 'i"q” i7q

1

4\ —
-y, |M[s . -¥
1ql liq

i’q'l /ﬁlsiq—wl ”S P 'l

1
M*[s

iq (5.40)

/’!
i’q

for i # i~ and q # q°. By an argument similar to the one used in

the proof of Theorem 5.1 to show thatlgiq—wiq ; 0, we can show that
1

Mé(giq-wiq) 3 0. Therefore the expression in equation (5.40) tcnds
in probability to zero as M»». Substituting these results back

into equation (5.38) we conclude that _Q: (z |Zi |)21 tends in
2A 4 4
»9q

probability to zero as M»>». Therefore the limiting distribution of
ﬁi(k-l*) is the same as that of FZ_,, i.e. a multivariate normal

distribution with mean vector zero and covariance matrix
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F(E(:)I)F FQF . This completes the proof of Theorem 5.5.
For the regression model designated as Case II we can use
a similar proof in order to prove the following theorem:
Theorem 5.6: Let i‘ represent the n x 1 vector of generalized
partial totals estimators for the exponential parameters given in
equation (5.10), where each i’, k=12,...,n, is a function

k

i=1,2,...,nand q = 1,2,...,n+l. If each A/

of the S° K

iq’
possesses continuous second order derivatives of every kind in
the neighborhood [giq—wiqi <6 for § > 0 where i = 1,2,...,n
and q = 1,2,...,n+l, and if the distributional assumptions
concerning the random variables sij stated at the beginning of
Section 5.4 and Theorem 5.1 are satisfied, then the limiting
distribution of /ﬁ(i‘~k;), where A, represents the vector i‘
with theigiq replaced by the W{q for all i and q in each of the

~

elements A, is a multivariate normal distribution with mean

k
vector given by the zero vector and covariance matrix given by
M-1
L Ed ‘T ” — -—’ —/ T - —— l -
F'Q°F°", where Q@ = E(e .€,. )s€g. = ey jice*j,

» - - - “ - T
€h5 = (13781, a1, g4 $257 7 52, game Sy, e

ij = Bi T Fi, im0 and

=Y |
- 3§i1 Ssx=Vix as;,n+1 L
ak oA~
| e — B : (5.41)
=Y 3s” S =¥’
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We now propose to obtain an expression for the asymptotic
efficiency of the generalized partial totals estimators of the
exponential parameters in our regression models for various
distributions of the random variables eij' Since the procedure
for both Cases I and II are similar, we will present the details
only for Case I and quote the results for Case II. Using some
of the ideas presented by Kendall and Stuart ([1961], Vol. II,
pages 55ff) concerning generalized variances, we will take as our
measure of the asymptotic efficiency of our estimators the

following ratio:

lim {IE <alnL> <alnL> HQIJ_ (5.42)

where L represents the likelihood function whose form will be

specified and Q represents the asymptotic covariance matrix of

our estimators. Therefore the matrix E <alnL ><alnL>

will be an n x n matrix with the (k,k‘)t element given by

(alnL><alnL> for k, k“ = 1,2,...,n. Kendall and Stuart

demonstrate that v is always less than or equal tc one when we
are considering consistent estimators of the elements of the
vector A, and that v = 1 for maximum likelihood estimators.

First let us consider for Case I the situation when the

T

joint distribution of the vectors Y*j = (Ylj’YZj""’Ynj) ,

j =0,1,.,.,(nt1)M-1, is given by:
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(n+1)M-1 1 1
_ 1 _ T -1
(2m) "7z

(5.43)

where I = E(Y,.-E(Y, ))(Y -E(Y,, ))T and

*J

k=1 . (5.4%)

Before evaluating the expression E(BlnL) <31nL> we observe that

n, 1 1 (o+1)M-1 T -1
InL = - '2 1n27 ~§1n|2| ) jﬁo (Y*j_E(Y*j))'E (Y*j-E(Y*j))
and we need
(n+1)M-1
dlmL _ 1 3 _ T.-1 -
- 2 r 1 {(Y*j E(Y*j) b (Y*j E(Y*j))} .

j=o
It can be shown from basic matrix theory that since E_l is
symmetric that
(n+1)M-1 1

£ DT (Y,.-E(Y,.))
jmo 3 3 j

3lnL _
A

th BE(Y,4)
where the typical (k,i) element of Dj is given by IV
k
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From the above results we may now write the following:

(n+1)M—
alnL 31nL -1
> ( > Dyt (Yyy B (¥yy))

(n+1)M-1 -1 T
T DjZ (

“E(¥,))
j=o e

*j

(n+1)M-1
B ~1 N _ T.-1.T
= jio Djz (Y*j E(Y*j))(Y*j E(Y*j)) )} Dj

(nt+1)M-1

-1 T.-1.T

+ jsjfgo DjZ (Y*j—E(Y*j))(Y*j, E(Y*j,)) T Dj,.
i#3”

From the previous assumptions given at the beginning of Section

5.4 concerning the random variables e ., we know that

ij

- ~ -—few \T - . . e~
E(Y*j-E(Y*j))(Y*j,—b(x*j,)) ¢ if j=3

=0 if j # j°
Therefore
(n+1)M— _
<31nL> <81nL> I (545
3 J
and from Theorem 5.5 we may now write
. (n+1)M-1 -1
lim -1 T| |1 T
= = . 5.46
v Mw{! jio D,Z DJI ‘MF(E®I)Fl} (5.46a)
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Going through similar steps we can determine the following
expression for the asymptotic efficiency of the estimators of the

exponential parameters for Case II:

(n+2)M-1 -1
P lim », "1 ;T l ey AT
v o= {l LI ¥ ||M F*QF } (5.46b)
j=o
where Dg is the same as Dj when we use the regression model given

by equation (5.10) instead of (5.9) and F’Q’F’T is given in
Theorem 5.6.

In Chapter 7 where a comparison of the various estimation
techniques discussed in this research will be made, the expression
for v will be evaluated for various values of n and various values
of the parameters in our regression model.

5.5 Extensions and modifications to the
generalized partial totals eéstimation
procedure

5.5.1 Multipléerepservations at each
value of the independent variable

During the discussion in the earlier sections of this
chapter concerning the generalized partial totals estimation
procedure we have assumed that only one observation was taken
for each value of the independent variable. In this section
we want to allow for multiple observations to be taken at each
value of the independent variable on each regression equation,
and we will determine the changes that arise in our generalized

estimation procedure. Corresponding to Cases I and II given
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earlier we have the following new cases:

n -\, X,

Case I*: Y,, . = L o,e k3 + €, ,.
ijj k=1 ik ijj

for 1 = 1,2,...,n; j = 0,1,...,(n+1)M-1; and j = 1’2""’Mi’ where

the observable random variable Yijj takes on the values denoted

by yijj'

—Akx.
Case II*: Y . .=a, + 2 a, e o P
ijj io 1 ik ijj

for i = 1,2,...,n; j = 0,1,2,...,(n+2)M-1; and j = 1’2""’Mi’

where the observable random variable Yij j takes on the values

denoted by yijj'

For Case I* we form the new partial totals gﬁq defined by

where i = 1,2,...,n and q = 1,2,...,ntl. For the estimation of
the exponential parameters of our regression model, we will use
exactly the same method as we presented in Section 5.3 with the
giq substituted in the place of the Eiq' For Case II* we form the

new partial totals E?; defined by
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where 1 = 1,2,...,n and q = 1,2,...,n+1. For the estimation of
the exponential parameters in this case, we will use exactly the
same method as we presented for Case II in Section 5.3 with the
'S*~ gubstituted in the place of the s: .
iq iq
In order to estimate the linear parameters for our new

cases we will proceed just as we did in Section 5.3 for the

estimation of the linear parameters in Cases I and II, with

oo

ZIH

yij' = i yijj replacing the yij of this earlier section.

_ij=1 "=

In order to conclude anything about the asymptotic properties of
these generalized partial totals estimators for these new cases,
we need to rephrase our assumptions concerning the random

variables ¢,,. as follows:
ijj

1) For each value of i, j, and j we have E(eijj) = 0 and
e? ) = o,, where 0 < 0, < . -
ijj ii ii

E(

2) For each value of i, i”, j, 3°, j, and j” with i # i” and

:” = =0 .
j # j°, we have E(eijjeij'j') 0 and E(Eij ") ii

where - © < 0,,. < *®.
ii

€.,
j 1733

3) For each value of i = 1,2,...,n we assume that Mi = mig where

n
0O<m <1land Im =1.
i . i
— i=1—
4) The second derivatives of every kind of the estimators of the

exponential parameters with respect to the new partial sums

S* or S*° are continuous.
iq 1iq
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With the above assumptions, we may use the same method of
proof as we used in Theorems 5.1 and 5.2, with the gfq's
andnggé's replacing thelgiq's and g;q's, respectively, to
conclude that the estimators of the expomnential parameters are
consistent as M»» or M»». In addition, we may follow a similar
procedure to that used by Cornell [1956] and that used in the

proof of Theorem 5.5 (or Theorem 5.6) with the Eéq's (or.ggé's)

replacing the giq's (or g;q's) to demonstrate that VM&(X*—A:)

(or @(x*'-x:’)) has a limiting multivariate normal distribution

as M»» or M>», where A* and A% (or A*“ and A} ") have similar
definitions to A and A*(or A’and A;) given in Theorem 5.5 (or
Theorem 5.6).

5.5.2 Some justification for the

grouping of our partial totals and

some modifications for unequally

spaced values of x,
4

During the development and evaluation of our generalized
partial totals estimation procedure, no reason was given for the
particular grouping of our observations in order to find the
partial totals of Siq’ which, in turn, would give us our
estimators of the exponential parameters. In this discussion
we will demonstrate that some other forms of grouping our
observations do not lead to estimators with the desirable
properties that our estimators have. Most of the results

presented here follow directly from the work by Cornell [1956],
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but will be presented here for completeness. Also, although the
following results may be obviously extended to Cases II, I*, and
II*, we will give the results only for Case I.

One possible alternative to the grouping of our
observations would be to divide the range of our independent
variable into M equal portions, taking the first observation of
each segment to go into the first partial total, taking the second
observation of each segment to go into the second partial total,
etc. Our new partial totals would then be written as:

A M-1

., = L y. .
e o, i,j(n+l)+g-1

S

for i = 1,2,...,n and q = 1,2,...,n+1l. Corresponding to equation

(5.11) we have

M-1 n -\, h(j (n+1)+q-1)
A Tk
Zi = I L aike
9 j=o0 k=1
=2, h(n+1)M
.3 Ahlad) g K )
= k_laike X h(ntl) .
B (1-e )

Going through the same basic steps that we used in Sections 5.2
and 5.3, we arrive at the following equation corresponding to

equation (5.12):

AA A A LA A MLAA g
MBSy “NoqBip + BTy ¥ DA

for i = 1,2,...,n, where Aﬁ, r=1,2,...,n, are the elementary
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-x, h
symmetric functions of e . In addition, we define Aﬁ = 1.

By substituting the S?q's in the place of the Z?q's, it follows
that the solutions for the exponential parameters may be easily
obtained in a similar manner to that used in Section 5.3.

In order to investigate some of the properties of these
estimators we will make the same assumptions concerning the
random variables eij as stated at the beginning of Section 5.4.

Next let us consider:

§A =<l SA =.l M;l g . e—)\kh(j(n+l)+q—-l)+ l.M;le
iq M iq M j=o0 k=1 ik M —o i,j(n+l)+q-1
='l EA + l'Mgle
M Cig M i,j(n+l)4q-1 °

By the same reasoning as we used in the proof of Theorem 5.1, we

. M-1
1

can show that'ﬁ L e

j=o

1,3 (n+1)+q-1 ; 0 as M»~., By using the same
3

assumptions as given in Theorem 5.1 we can show that

1lim

M-1 _)\kJ(n-i-l)j/M -lkJ(q—l)/M<?/ >
Moo e M

n
z I o, e
=1 j=o ik

Gl

-, (n+)t
k it = v& |

}
a e
ik o iq

u

(o
Tap
[

A > A .
which is independent of q. Hence Siq P wiq’ and by using the
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same line of reasoning as presented by Cornell [1956] we conclude
that the matrix RA evaluated at the point gﬁq = W?q will be
singular, and therefore our estimators of the exponential
parameters will ; o as M»». That is, these estimators will not
be consistent.

Another alternative method of grouping could be applied
when M is a multiple of (n+l), in which case we could divide our
domain into (n+1)2 equal groups each containing ;%I observations.

Then in the place of ziq we will use

M M M
A qnfl-% (q—i-n,-i-l)n+1 1 (tri-rl(r1+l)+l)“+1 1
D B cos
iq z y E(Yij) + L y E(Yij)+ + z ME(Yij)
I=(e-1 ;7 j=(etn) 7 i=(qtn(n+l)) 7

where i = 1,2,...,0n; ¢ = 1,2,...,n+l; and the superscript A
indicates an alternative grouping. With this alternative grouping
we can show that the new partial totals satisfy the system of
equations given by (5.12) with the Z?q substituted for the ziq'

We may now use this new system of equatioms to solve for the

\

M M
—Aldn+l e Andn+l

elementary symmetric functions of e ey In

order to find our estimators of these elementary symmetric
= A
functions we will use the partial totals Siq in place of Ziq

where
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M ] ) M
q;-_;rl (q—rn+l)n_*_l 1 (q+n(n+l)+l)n+l 1
sh - ol T + £ Hooot X
iq = M o L VR A WRESH AN
i=(e-D 7 j=(¢tn)_ 7 j=(qtn(nt+l)) 27

From the results given in Section 5.4 and the results derived by
Cornell [1956] we can show for this alternative grouping that the

determinant of the matrix RA, which is the same as the matrix R in

Section 5.4 with_SmA used in place of S , evaluated at EA = ¢%
iq iq iq iq
is equal to zero, where E?q ; ¢?q. Hence we see that there are

alternative groupings for the partial totals which lead to an
estimation procedure similar to that developed in Section 5.3, but
these alternative groupings do not have some of the desirable
properties of the generalized procedure presented in Section 5.3.

We now want to propose some modifications that will be
concerned with the assumption about the values of xj in equations
(5.9). and (5.10) being equally spaced, and with the assumption
about an equal. number of values. of xj-being'takenfforueachmpartial
total S, . For the particular situations arising when these

iq

assumptions zre not satisfied, we may think of the Ziq'

s as
approximations to areas under the curve found by plotting-
E(Yi(x)) against the independent variable x. With this
interpretation in mind, we will suggest the following
modifications to the generalized partial totals estimation
procedure when some of our observations do not satisfy all of

the basic assumptions:
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1) Divide the domain of the independent variable into the desired
number of intervals, each interval being of the same length.
2) Add the observations in each of these new intervals together,

weighting each observation yij by the following:

B N0 N T i B B NS e S |
+ = .
2 2 2

3) Divide these new partial totals by the sum of the weights, and
substitute these weighted averages in the place of the giq's which
appeared in Section 5.3.

In order for the limiting properties of the estimators to
still hold, we must continue to assume that the domain of the
independent variable for each partial total is constant, and the
number of observations for each partial total becomes large.

The above modifications are useful for the estimation of the
exponential parameters. The estimation of the linear parameters,

given the exponential estimates, would remain unchanged.



VI. A GENERALIZATION OF SPEARMAN ESTIMATION

6.1 Introduction

In this chapter we will develop and discuss some of the
properties of an estimation procedure that may be applied to the
estimation of the exponential parameters of a member of the class of
regression models given by equation (1.1). This estimation
procedure will be based upon a generalization of the Spearman
estimation technique as presented by Johnson and Brcwn [1961].
Therefore in Section 6.2 we will present the estimation technique
for the case when n = m = 1 in equation (1.1l), which is the case
considered by Johnson and Brown. It is given here for completeness.
In Section 6.3 the generalization to this estimation procedure will
be presented, and finally in Section 6.4 certain properties of these
estimators will be presented. Since the particular regression
models that we will be considering are motivated by the equations
that arise in describing tracer experiments, there will be certain
restrictions placed upon the linear coefficients of our model, e.g.
the sum of these coefficients must be equal to a constant., As the
various steps of the estimation procedure are presented we will

specify these restrictions.

98
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6.2 Single equation Spearman estimation

The results in this section are contained in the work by
Johnson and Brown [1961] and Cornell [1965]. However, we will
repeat some of the results here since some of them will be needed
for the generalized estimation procedure to be presented in the next
section. The particular regression model that we are considering

now is given by:

-y
Y. =1-¢e +€e, . .1
j j EJ (6 a)

It is possible to think of this as ome of the regression equations
arising from a two-compartment mammillary or catenary system where
the observations represent the proportion of radioactive tracer
present in a compartment at a particular time, as Section 3.1
demonstrates. Since the sum of the expected values of the observed
random variables will be fixed for this case, there is only one
independent regression equation which is given by (6.Ja). We will
drop the subscript i as we did in some of the earlier chapters,
since for this discussion i = 1 only. In the last chapter we
assumed that the values of the independent variable were taken such
that x - X

b S |

Since we are assuming that the expected values of the observed

= h for all j where h > 0 and h is independent of j. ‘

random variables are following an exponential function, it would
appear more reasonable in fitting our observations to a particular
function to take most of our observations in that region of the

independent variable where our function is changing the most.,
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Hence in this chapter we will take our independent variable to be of
z

3

the form x, = e - where zj =z + jd for j =0, t 1, +2,,,., t M

]

when the number of observations is odd, and z, = z_ +d(j + %9 for

i
j=0,*1,*2,,..,t (M -1), - M when the number of

obgervations is even, i.e. the values of zj are taken to be equally

spaced. Hence our regression model becomes

z
Yj =1 - exp (-Ae j) + ej, (6.1b)

for =0, t1, £ 2,..., * (M~-1), and * M or - M” depending upon
whether an odd or even number of observations has been taken. When
we want to consider the expected value of the observed random
variable as a continuous function of the independent variable,; we
will denote this by E(Y(z)) = 1 - exp (~Ae>) where - ® < z < ®,

This last statement implies that we are assuming that E(e,) = 0 for

k|
all j, where Ej appears in equation (6.1b),
The first step in this estimation procedure will be to

evaluate the following integral:

o« €0
p(l) = f?dE(Y(z)) = fzxez exp (—Aez) dz = - y - 1n\ (6.2)
where y is Euler's constant. Solving the above equation for X we
find

(1)
A=e T e ¥ ‘ (6.3a)
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The next step in this estimation scheme will be to propose an

estimator of u(l), denoted by u(l), which will be substituted into

(6.3a) to give us the following estimator of A:

T ¢ )
A=e Te " (6.3b)
The estimator for u(l) is given by the following expression:
~(1 i+1
u( ) - 5 (.J_z__.l__> Ay, (6.4)
j:-M’ J

where ij = yj+1 - yj, yj represents the observation for the value
of the independent variable equal to zj, and where M"” = M” for an
odd number of observations but M°” = M” - 1 for an even number of
observations.

(l), Johnson and

Brown [1961] investigate some of the properties of u(l)

After proposing the above estimator for u
under the
following assumptions:

1) The observed random variables are independent binomially
distributed random variables.

2) The value of M” is assumed to be large enough so that we can
take Yy = E(Y(-®)) = 0 and Yy~ E(Y(+2)) = 1, where M”” has been
defined above. Under the above assumptions Johnson and Brown

A

demonstrate that u(l) is approximately unbiased and that the

variance of ﬂ(l) dninz

is approximately equal to where n* is the
number of observations taken at each value of the independent

variable, These authors also demonstrate that the asymptotic
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efficiency of ; as M~ becomes large is 88 per cent.

Cornell [1965] demonstrates the similarities between the
Spearman estimation procedure proposed by Johnson and Brown and the
estimation procedure proposed by Fisher [1921] for the model given

by the single exponential equation.

6.3 Generalization of Spearman estimation

In this section we will show how the method of Spearman
estimation discussed in Section 6,2 may be generalized to estimate
the exponential parameters in another regression model that is a
particular member of the class of regression models given by
equation (1.1) for n > 1. The particular regression model that we

are interested in may be specified by:

Yi(Z) = E(Yi(z)) + € (6.5a)

i

for i = 1,2,...,ntl and -~ ® < z < ©», More specifically, we will
take our regression model as:

z z
E(Yi(z)) =, exp (-Ale ) + @y, exp (—Aze Y+...

+a, exp (-Anez) + a

in i, n+l (6.5b)

for i = 1,2,..,.,n + 1, where the following conditions are imposed:

1) E(Y, (=) = E(Y,(+)) = 1.
2) E(Y(+)) = E(Y,(==)) = E(Y;(2=)) = E(Y,(*%)) = ... = E(Y (:=))
= E(Y_,,(*)) = 0.

n+l
3) I E(Yi(z)) = 1 for all 2 and 0 f.E(Yi(z)) <1 for all i and z.
i=1
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With the above conditions we may find the following relations to be
satisfied by the coefficients of (6.5b):

D)

= 0; o =1 -qa,. - a

%1,n+1 1n 117 %2 7 0 T % p-12
2 9y b1 T 1 g = ey tay,tet, gt o+
= -(1+u21+...+a2’n_1)t
3) O bl " 0 for i = 3,4,...,n+l1, .
4) @ = -(ail+aiz+...+ai’n_1) for i = 3,4,...,n,
n
5) an+1,k = ;ilaik for k = 1,2,...,n.

It is easily seen by reference to the theorems of Section
3.1 that the regression model given by (6.5b) with the above
conditions may be used to describe an (n+l)-compartment catenary or
mammillary model where a fixed amount of tracer material is injected
into the first compartment of the system and is allowed to
accumulate in the second compartment of the system. The
observations would represent the proportion of tracer material
present in a particular compartment for a particular value of the

®

independent variable. By a comparison of the results from the
theorems in Section 3.l with equation (6.5b), it is noted that we
have taken x = e. The reasons for doing this are the same as those

given in Section 6.2 for the simple exponential model. With the

above conditions on the coefficients of our exponential terms in the
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regression model, we may now write our expressions for the expected

values as:
= -} 2 - o2
E(Yl(z)) a;, exp ( A€ ) + ayp eXp ( 2,8 ) + ...
+ - z -0 . =0 = - -} e?).
) no1 X (FAg 47 + (Qmogy-ag o= vee moy ) exp (SA %)

E(Y,(z)) =1+ a,, exp (—Alez) + o,., exp (-Azez) + ...

21 22

- zy o - e?):
+ % ,n-1 S¥P (=2 _18%) - (Tta, + ... +a2,n—l) exp (=2 e?);

E(Y (2)) = o, exp (-A;e®) +a , exp (-1,e%) + ...

2
- 2y - 4 a2y
+ c‘n,n-l exp ( An—le ) (anl+an2+ e ¥ o‘n,n—l) exp ( Ane )3
Ny = z
E(Yn+1\z)) (a11+a21+ cee +anl) exp (—Ale )

- - z -
(a12+a22+ coe +an2) exp ( Aze ) cee

A FA
= (o hoq? pogt e o oop) exp (A pe)

4
+ (o % ... +“n,n-1) exp (-A_e”). (6.5¢)

From the assumption that n;i E(Yi(Z)) = 1 for all z, we
note that only n of the equations ;;ven by (6.5b) or (6.5¢c) are
independent. Therefore, without loss of generality, we will work
with the first ﬁ equations of this set. The basic steps of the
generalized estimation procedure may be outlined as follows:

Step 1: A linear combination of the n elementary symmetric

functions of lnAl, 1n>\2,...,ln>\n is derived for each of the n
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independent regression equations.
Step 2: The above linear system of equations is solved for the
elementary symmetric functions,
Step 3: Expressions for 1nx1, 1n>\2,...,1nAn are obtained by finding
the roots of an nth order polynomial equation.
Step 4: We use the relations A1= elnxl,...,xn = elnxn to obtain
expressions for Al,...,xn, which are functions of E(Yl(z)),...,
E(Yn(z)).
Step 5: We obtain our estimators of Al,xz,...,xn by approximating
the functions of E(Yl(z)), E(Yz(z)),...,E(Yn(z)) by functions of our
observations yij’ where yij is an observation on the ith equation
for the value of the independent variable equal to zj.

Before we can do the first step of our estimation procedure,
we must consider two different cases which cover each of the

equations in (6.5c¢) and which are given by:

Case 1: The regression equation may be reduced to the form:

n-1
_ 2
E(Yi(z)) = kZ . exXP ( Ake )
=]
z
+-(l—ail-...-ai’n_1) exp (-Ane ). (6.6a)

Case 2: The regression equation may be reduced to the form:

_ 3 oZ _ z
E(Yi(z)) = 059 €Xp ( Ale ) +e..t ai,n—l exp ( An—le )

= Cagqteeeta, | 4) exp (—Anez). (6.6b)
?

Since the subscript i will not be needed in the following derivation,

we will drop this subscript during the following discussion.
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First we will consider Case 1 where the regression equation

may be described by:

n-1 z
E(Y(z)) = I a, exp (—Ake )
k=1
' z (6.7)
+ (1 al-...-an_l) exp (-Ane ).
Consider the following integral:
. © . = . n-1
u(k ) - f X dE(Y(z)) = | 24 ¢ o, exp (=i e?)
k k
-co —c0 k=1
z
+ (l—al-...-an_l) exp (-Ane )}
f ,{n—l 2 z
= -]z L o, A e exp (~i e”)
o k=1 k'k k
(6.8)

+ (l—al-ooo-an_l) Anez exp (—)\nez) } dz
for k* = 1,2,...,n-1. A typical term in (6.8) would be of the form

[+
k*. =z Zz
- f az Ae” exp (-re )dz
00

which reduces to

< k” -t k”
-a £ (lnt-1n)) e dt = - a{lk‘_<l ) 1““:;’-

K 2 k! k-1 k”
+<2 (1n)) Ik,_2+...+< -l)(—ln)\) I, + (-1m) 10}

° k™ ~t
by the substitution t = A& where I..= [ (Int)” e "dt for
o
k“* =0,1,...,k”. By suybstituting the above expressions for a
typical term of (6.8) back into (6.8), we obtain the following

system of equations:
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n-1 (k '\ (k‘) ) )
kil{: 1 /Ik,_l(lnxk-lnxn) - \2 Ik,_z((lnxk) - (lnxn) Y+...

+ (-1)“"2(1::1) I, (Qm ) ) h

+ D am* - (mn)k')} o =

W&y I - G) I . jlon +<12{‘> Ik,_z(ln)\n)z teu.
+< l5:1> G L & P (6.92)

for k“ = 1,2,...,n-1. 1In order to simplify the notation in (6.9a),
we make the substitutions lk = lnA and o ak(l ~1 ) for

k =1,2,...,n. Equation (6.9a) becomes
-1 {(k’) (k’> <1i - 131) <k> 113
s\t /1. .-\2/1. — )+ \3 /I, ._ [+ >-
ol k-1 k*-2 \I_ - 1 k*-3\1,-1_

s ), (R

k _ln

lk - 1k

4 (pkL (']—.E—T—ll' } o =
EP () 6
+ I A+ k’ ( 1 ) + k, ( 1 ) +.0.
N <k1§_' > k-1 k*
-1/1, (-1) +(-1) (6.9b)

for k“ = 1,2,...,n-1. A small table of values of the function Ik‘

for various values of k“ is given as follows:
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k” I.

0 1.00000000
1 ~0.57721566
2 1,97811199
3 ~0.63664683
4 12,45795881
5 -80.84065721
6 486.79308438

At this point we will use matrix notation so that we may
express all of the equations in (6.9b) in a single expression. Let

V be an (n-1) x 1 vector with k’th element given by

” k’ k’
LB Ik’+<'1 >Ik’-l(-ln) + (2 >Ik,_2(-1n)2+u~

+(k‘-1\ 1,15 4 )k (6.10)
\ /J n n

Let a” be an (n-1) x 1 vector with elements: ai, aé,...,aﬂ_l.

Let L” be an (n-1) x (n-1) matrix with (k’,k)th element given by

K’ <k’ > k**-1 AR
5 \k-*/ (1) I . ... (———:———) . (6.11)
k” =1 ko= N -l

Using the above defined vectors and matrices we may write (6.9b) as

L a” =V, (6.9¢)
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For the particular case when n = 4, the matrices L, a”,

and V may be written as

1
L% 21, - (1,41,)
3L, - 3L, (1,41,) + (12411, +12)
2 = 3,14, 111,
1
21, - (1,41,) °
31, - 3L, (L+1,) + (12411 +1%)
2 1,11, 21,4,

1
211 - (13+14)

2 2
3I2 - 311(134-14) + (13+1314+14) ,
’ (1)
al + Il - 14

A Ao@ _ 2
a az s and V ={u + 12 21114 + 14

+30.1% - 13

(3)
BT+ I, - 3,1, 13 - L,/

3 3
Next carry out the following set of elementary row operations on the

matrices L and V: .
1) -Multiply the first row by = 312 and add to the third row.

2) Multiply the first row by =~ 211 and add to the second row.

3) Multiply the second row by - 31l and add to the third row.

4) Multiply the second zrow by ] 4 and add to the third row.
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5) Multiply the first row by l4 and add to the second row,

After the above operations the matrix L~ reduces to

1 1 1
e T S 5
2 2 2
12 1 1 ,

‘3 2 74 )
e R ¢ R ¢
where K1 =y + Il’ K2 =y + 12 ZIlhl, and K3 = y + 13
- 3121(l - 3IlK2. The performance of the above elementary row

operations is equivalent to multiplying both sides of (6.9c) by the

triangular matrix

1 0 0
T = —211 + l4 1 0
612 - 31, - 2I.1 -3I, +1 1 .
1 2 174 1 4
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By the use of an inductive argument it can be shown in
general ss well as for n = 4 that there exists an (n-1) x (n-1)

triangular matrix T such that

1 l L] . L] l
<1, -1, R
2 2 2
l 2 1 3 ] - . ln- l
. 3 .3 3
TL" -1, 13 e
n-2 n-2 n-2
(-1, (-15) A (6.12)
and
/; - \
K1 ln
K, + K 1n
Vv = | Ky + K, 1n
i .
|
K + K 1 (6.13)
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where
Kl = u(l) + Il
Ky = u(2) + I2 - 211Kl
K3 = u(3) + I3 - 312K1 - 3IlK2
Ka-1 = WOy S <n11> Lh-2® - <n51> L3Ry =eee
- <§:§> I Kn-2, (6.14)

Using the above notation, the solution for o” becomes
e I—l
a® = (TL") V. (6.15)
We note that the matrix TL” is a Vandermonde matrix; therefore,

“f =1 -
| TL| Q.-1,.) #0 (6.16)
k < k~
and (TL’)-1 exists since 1k # 1, . fork # k” because we have assumed
that Ak # Ak' for k # k”.
In order to simplify some of the above notation let D = TL”

(k)

and let D be an (n-2) x (n-2) matrix derived from D by deleting

- *
the kth column and (n-l)St (or last) row of D. Let C represent the

* *
set {11, 1 1 and let C =C - {lk}. Then from Aitken

IRRRE Y. (k)
([1949]), page 118) or Cornell ([1956], page 27) the (k; k)th element

of the matrix D' is given by
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+k -1 k” )
= (1" Lt N e (6.17)
n—k-l
|
*

€k-y) th
where A k-1 is the (n-k-1) elementary symmetric function of the
elements from the set C Using equation (6.15), the k‘th

(k7)*

element of a” is given as:

*
n-l ™ (k’) (C » )
. n+k “-1 D (k*)
o k- = kzl (-1) J——I-J—L An—k_l (K1(+Kk—lln) (6.18a)
where K = - 1.
o
*

If we define Ao = 1 and use the relation

*
(C, . .\) (c ,) (c )
U39 M (k*) (k )
L A = Aeny w1 7~ o
*
where C(k‘) = C(k’) + {ln}, then
O = (-1 *—151—4-kio Kn-k—lhk (6.18b)

The next step will be to substitute the vector a” into the

following equation:

= u(n) +1 + Z <k”> I - (- 1 ) . (6.19)
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With this substitution the following equation is satisfied:

L -V
=0, (6.20)

l‘T -v

where the matrices L” and V have already been defined earlier, and

1 is an (n-1) x 1 vector with kth element

2
o\ <1k_‘___> .
<1> n-1 <2> n-2 1k <> n-3 - 1 o
ln—l - 1n 3‘ - 1
n-2 n k n n~1 k n
+ D <n—l> Il<1k AR <1k - 1n> (6.21)

v=1® 4 I+ s ( > I (-1 ) i (6.22)
K =1

and

It should be noted that equation (6.19) is merely equation (6.9a)
with k* = n
L’

-V
l'T _ v) is equal to

For the case n = 4 the matrix<

the display given on the following page:
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(vgz*9)

T =4
*N - \\& \\\.& "y m 3
LAt T Wv S (3
/ T=.1
oN - \\.Vﬂ ( \\Vﬂ N 1
e () T
v _ 1 "
T I+ (1)

Y
\\Vﬁ \\Vﬂ.
/ ju N.H N-E » T =..7
1. (1) 3
- Y I-. .1 € ¢
\\.Vm \\V.—

A q.ﬁl mH
v €
m - %
7. _ €
R L
A fu mH
v €
I L L
A #.ﬂl H._“
Y T
A 1- T
v 1
S L L
A qan T
e _ 1
I LI
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Next we will carry out the following sequence of elementary row

operations on the above matrix:

Y
2)
3)
4)
5)
6)
)
8)
9)

Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply

Multiply

the

the

the

the

the

the

the

the

the

first row by -211

first row by -3I, and add to the third row.

2

first row by -413

and add to the second row.

and add to the fourth row.

second row by -311 and add to the third row.

second row by -612 and add to the fourth row.

third row by -411 and add to the fourth row.

third row by 14 and add to the fourth row.
second row by 14 and add to the third row.

first row by 14 and add to the second row.

After these elementary row operations, which are equivaleat

multiplying the original matrix by a triangular matrix whose

determinant is one, our original matrix reduces to

where K., K

1* 72?

Kﬁ =

1 1 1 Kl - 14 \

1 4 K tK 4

12 1 12 Ky +K, 1,

i —lg -lg K4 + K3 14

and K3 have already been defined, and

p(l.) + I, - 41

Kl - 61K, - 41.K,.

4 3 272 173

to

(6.23b)
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L T -V > , which is equal to the
177 - v

determinant of (6.23b), we will evaluate this determinant by

Since we want the determinant of <:

expanding the determinant of (6.23b) about the elements of the last

row giving us, after extensive algebra,

3
.3 ) (€, 2O, A(C)_, (©)
(-1) < )| . 1, 1k,)> (K, HRGA 7 HRH AT HK A A, )
k,k =1
k<k”
where C = {11,12;13,14}. This last expression is equal to zero by
equation (6.20).

By an inductive argument we may show that the general matrix

(L T V> may similarly be reduced to

I -v
1 1 1 U | Ky - 1
L h ~15 SRR | K ¥ K1,
/ 12 1) 2 ... 12 Ky + Kyl

n-1 n Kn--lln s

(6.24)
and, in addition, an inductive argument may be used to show that the

determinant of the above matrix is equal to
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1™ o] (R A O 2 O4 2O, .

-1"1 "n-2"2 Tn-373
(C) 1 4 (C)_,(C)
KA AR A =AY (6.25)

which is a generalization of (6.23c). 1In the above expression

Kl’ KZ""’Kn—l’ and D have already been defined, C = {11,12,...,1 }

n
_ ¥ _ (m) n n
=c +{L}, andk =u +1n-<l> I K- <2>1n_21<2-...

n n .
- <n-2> IZKn—Z- <n-l> IlKn—l' Since |D| # 0, by using equation

(6.20) we obtain for Case 1 the linear combination of the elementary

symmetric functions of the elements of C given by:

(C) (C) (©) (©)_,(©) _
Y S D Y P ST ST N - K. (6.26a)

Next we will consider the regression model designated as

Case 2, which may be described by the expression
- ) o2 1 o2 _
E(Y(z)) @ exp ( A8 )+u2 exp ( Aye Y+...

+an—l exp ( An—le ) (a1+...+an_l) exp ( Ane ).

It should be noted that the subscript i has still been left off of
the regression equation in order to simplify the notation for this
particular portion of the discussion.. In addition, since most of
the conclusions for this case will be obtained by steps that are
very similar to those used for Case 1, we will not include as many
of the detailed steps here as we did for Case 1. However, we will
refer back to the corresponding portions of the discussion for

Case 1 so that the reader may be able to add the intermediate steps.
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Again we begin our estimation scheme by evaluating the following

integral:

2 o LR R e))

. n-1
k” z
fz d Lkzlak exp ( Ake )—(a1+...+ak) exp (-Anez)}

? k'_{ n-1 z z
= |z -L o, A e exp (=A e7)
k=1 k"k k

=00

z 4 T
+ (al+...+an_l) Ane exp (-Ane )_f dz (6.27)

for k“ = 1,2,...,n=1, Using the same substitution and procedure to
evaluate the above set of integrals as we used to derive the set of

equations given in (6.93), we obtain the following set of equations:

n-l
k*’-1 k*” k*”
<k“—1 <k"> g (-1) ((lnAk) —(lnkn) )> o

- u(k') (6.28a)

for k¥ = 1,2,...,n-1, where I I,, I have been defined earlier.

l’ 2’ 3,0'.
Using the same substitution that we used earlier to go from equation

(6.9a) to (6.9b), equation (6.28a) becomes:

k" k" .
L hee o G
;4 l k -k lk "ln
(6.28b)
for k‘ = 1’2,000,11--1.
Using a matrix notation similar to that used to obtain

equation (6.9c), we may write equation (6.28b) as:
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L” a® =V~ (6.28¢c)

where L” and a” have been defined earlier, and

T
v D, @ (a-1),"

1] oo ]
If we premultiply both sides of equation (6.28c) by the triangular
matrix T mentioned in connection with equation (6.12), then equation

(6.28¢c) becomes

TL  a* = TV  or D a“ = TV”

where
Ki + Kl ln
TV’ = K3 + Kz 1n
\K’ + K; 2 n/ (6.29)
and
PN ¢V
Kl u
e
K2 -211!(1
K; = (3)-31 KI-31.K;

3 K173 K5

. (n—l) n-1 K= n-1 .
X - < > n-2 K- ( >In-3 Kgmeee- <n-2>11Kn 2°

(6.30)
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For Case 2 the solution for o” is given by

o* =0t Tv- (6.31a)
or
"), n-1 (Cr )
. o (_qyDtk~-1 |D Pl (30 MPSU—
%~ = (1) A TS L e S Y
. (k)| n-1 (C, )
(-1) ‘L—m—l' z Kk An—k-l (6.31b)
. o
for k* = 1,2,.,.,0-1, where K; =0, Ao = 1 and

. _
C(k,) = C(k‘)* {ln} = {11’12""’1n} - {lk,}. The next step will be

to substitute the expressions for the aﬁ 's into the equation

ké' kl‘
n-l/n v 1" -1
z (:z <:,,> 1‘.n_k,,(—1)k - <'1£—_Tn—>>a{‘ = @,
kel “k““=l k n

(6.32)
It should be noted that equation (6.32) is the same as equation
(6.28b) with k“= n, With the above substitutions the following
relation is satisfied:

L -V’
1-T = u(n)

=0
(6.33a) .

(n) have already been defined. Using the

where L*, V7,1, and u
same type of elementary row operations that we used to obtain
equation (6.24), which we indicated earlier were equivalent to

multiplication by a triangular matrix whose determinant equals one,
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- V’
the matrix (1’1. (n)> may be reduced to

/ 1 1 1 A | Ky ‘\\
-1 -1, -1, T | KK,
1 12 1 R Ky + K 1
-1i -1 -13 ... -13_1 Kp + K] 1

n _ n-2 - n-2 n-2 - .
- _q1 yb-1 _q y0-1 n-1 - .
(6.33b)
where K’ have been defined earlier and

1? 2:“‘9 1

(> LM \2) Lh-2Kg —eee (n-l/llnl

The equation given by (6.33a) is equivalent to the
determinant of the matrix given in (6.33b) being set equal to zero.
If we expand the determinant of this matrix about the elements of
the last row and use an inductive argument similar to that used to
obtain equation (6.25), then we find that equation (6.33a) is

equivalent to

w2k A(C)) = 0.

caxs A Oug- 2O
-n" |D|(K+K - + SA o HKIA 7Y

1 2 2 LN
(6.33c)
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Since we are assuming that |D| # 0, equation (6.33c) is equivalent to

- 70 e 4 (0 2 €C) o n (C) _ o
K> A 7THKE A, Tk ARIA KT T = - K (6.33d)

At this point we will add the appropriate subscripts to the
K's and K“'s in equations (6.26a) and (6.33d) so that we will know
from which regression equation our linear combination of the
elementary symmetric functions arose, and combine the above results
into the following theorem:
Theorem 6.1: If a regression model may be specified by equation
n+l

(6.5¢), and if it is assumed that I E(Y
i=1

1(Z)) = 1 for all z, then

by the evaluation, for each value of i = 1,2,...,n, of the set of
integrals

uik') - _izk'da(yi(z))

for k* = 1,2,...,n, the following set of linear equations in the

elementary symmetric functions of 1na lnkz,...,lnxn are satisfied:

1’
© © © ©_© _
Kion-1tn Ky noaf Ky gty e g AT T Ky
(6.26b)

for i 1,2, and

©,©

Ki,n—l 1

” . (C) » (C) . (C) . (C) _ .
i, n-2fy TG poafy e A G A1 = K

(6.33¢)

for i

3,4,...,n. The K's, K”'s, and the set C have all been
defined earlier in connection with equations (6.26a) and (6.33d).

From the equations (6.26b) and (6.33e) we have a system of n
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equations that are linear in the n unknown quantities

A{c), Agc),..., Aéc), i.e. the n elementary symmetric functions of
1nx1, lnxz,..., 1ndge, Therefore we can solve this system of

equations for the quantities A{C) A(q),..., Aéc)in terms of the K's

and K*'s. From the solutions for A(c) §C)’.‘.’ Aéc), which will
be ratios of linear combinations of the K's and K’'s, we may find

the solutions for 1lnA., 1lnA,,..., 1nA_ by obtaining the n roots of
2? n

1’
the polynomial

n-1 (C)

W-AS Ort(-1) A(C) 0.

O P LialOP2 0 OF 3 )

(6.34)
1nx

Using the relations A,=e s x2=e ,...,An=e ? e may then use

1
the n roots of equation (6.34) to obtain solutions for Al,kz,...,kn.
We note that the solutions for Al,lz,...,xn are functions of the K's
and K"'s, which, in turn, are functions of known constants and the
unknown quantities uik‘)for i, k“ = 1,2,...,n. Hence in order to
obtain estimators of the exponential parameters we will propose
estimators for the uik‘)'s.

On each of the regression equations of our model, the
observations will be taken according to the same procedure as
described in Section 6.2 for the single exponential model, i.e. the
2M°+1 or 2M” observations on each equation are taken for the values
of the independent variable given by zj = z°+jd or zj = z°+d(j+-%),
respectively. Let yij represent the jthobservation on the ith

equation. Then by considering the definition of a Riemann-Stieltjes
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integral the estimator of u(: ) is given by
M=l ,z,+z k”*
-~ b +
a6 oy (L) (6.35a)
i =y, 2 ij

where Ayij = yi,j+1_ yij’ zJ has been defined earlier for both
situations when an even or odd number of observations have been
taken, and M““= M”~1 if an even number of observations are taken but
M““= M” if an odd number of observations are taken. Since we will
be interested in investigating some of the asymptotic properties of
our estimators of the exponential parameters, we will assume that

M’ is large enough so that y = E(Yi(-m)) and y ory
1,-M" i,M°-1 i,M°

= E(Yi(w)) depending upon whether an even or odd number of

observations has been taken., With this last assumption the

estimator uik ) simplifies to the following expression when an

odd number of observations have been taken:

afr e k”
WD) = @ war D EE )

-2 -{ d k” (, d)k'
+ I (z +jd- 5) =-(z +jd+ 3 }y
J=-MHL o 2 o 2 1]

k‘
+ (2 H0d- D) E(Y (+ =), (6.35b)

If the ith reqression equation is of the form specified by Case 1

~ k')

then the expression for Uy simplifies to
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Apr - k”
u- {(z +H(- D))

b1 - (Rl ) } Vi3

1 K
+ zar-3) (6.350)

and for a Case 2 regression equation this reduces to

uik"- {(z H3- P - @ HE D }yij (6.35d)
J=~ M “+1
For the situation when an even number of observations have been

taken, equations (6.35c) and (6.35d) reduce respectively to

MR
1

{(z HO® - (z +3ar)® }yijﬂz +M-1))*
j= -M”+1

and

~(k),, { }
u (z +Jd) Gz JHard)™ ¢y
1 j=-M'+1 13

(k°)

N given by equation (6.35a)

Hence by using the estimators of u
in the expressions for the K's and K“'s, we may obtain our
estimators of the Ak's for k = 1,2,...,n, The estimators of the

linear parameters in our regression model may be found by the same

technique as we used in Section 5.3 of Chapter 5.

6.4 Some properties of the generalized Spearman estimators
During the presentation and development of the generalized
estimation procedure in Section 6.3, the only assumption that we used

concerning the random variables eij was the assumption that E(eij)-o
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for all 1 and j, and the assumption that M” is large enough to that
yi,—M' = E(Yi(—w)) and yi,M’-l or yi,M' = E(Yi(m)). However, before
we investigate some of the properties of our estimators we will make
some additional assumptions about the random variables eij and about
the spacing of our observations. These assumptions may be stated as
follows:
1) For fixed i, the random variables Eij’ where 1 = 1,2,...,n and
j =0, %1, #2,,.,,tM" or j = 0,%1,%2,...,t(M"-1), -M", are un-
correlated with E(eij) = 0 and finite variance such that Var (eiM,)

tends to zero as M7 —> o ,

2) For i # i” and j # j~, the random variables eij and ei’j’ are
uncorrelated,
3) For k" =1,2,...,nand 1 = 1,2,...,n, the following limit
exists: o
a7 [p (z,) T Var (e, ) (6.36)
M — e G T LR 1j

where M”” has been defined earlier and

z +z,_1 k” z,+1+z, ki d k” 4 k”
de’_l(zj) = {( 2 > -< 2 > j =(zj- —2-) -(zj+ ‘2‘

k*-2 k=3 2

k-1
d d d d d
= - d‘{(zj— E) +(zj- 59 (zj+ §)+(zj— 59 (zj+ 2) +

k”-2 k*-1
d d d.
...+(zj— Eﬂ(zj+ 59 +(zj+ 5 }- (6.37)

1i
4) For all j, as M° —> « we want z, M’——E 4 =0,

J+l-zj——> 0, i.e.
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5) As M° — = wye want Iy oy T % which is equivalent to

lim

W o M7 = .

All of the assumptions of the above lemma are satisfied in
some reasonable and practical situations although the third
assumption may be difficult to verify., As one particular example
where these assumptions are reasonable, we will consider the case
when 1 = n = k” = 2 and we will assume that the random va;iables €2j

Py, (1-p,
are independent with E(ezj) =0 and Var (ezj) = -—J—;Er—j—- where

z z
p2j = @, exp (—Ale j) + (1—a21) exp (—Aze j). This particular case
might arise when we use the normal approximation to the distribution

of a binomially distributed random variable. For this situation
d d
P z,) =(z,~-5) + (z2,.+3) = 2z,
and equation (6.36) becomes

A p,.(1-p,.)
d I (22.)2_23___21_
j=M-+1 I

lim

M° —~—> o n*

= %} f zz(QZIeXP (-Alez)+(1—a21)exp (-xzez))

(1--'a21 exp (-}lez) - (1-0,;) exp (‘Azez)) dz.

By making the substitution t = exp (-e®) and after extensive algebra

we can show that the above integral is equal to
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2

4 L cim. 2
ok [aZl'{(lnkz-lnAl) [12+y(1nkz+1nkl)+ 3((ln)\z) +1nkllnA2+(1nA1) )]

-
+ 2(In (A +),)-1nr,~1n2) l_IZﬂ(ln(Al+Az)+1nA2+ln2)

1 2 2 2
+ 3 ((ln(ll+).2)) +ln(Al+)\2)1nA2+ln(A1+)\2)1n2+(1n>\2) +(1n2) +21t121n)\2>]~l

J

1 2 2
+ 1nd, [Izﬂ(Zln)\2+ln2)+ 3((1:12) +31n21nA2+3(1nA2) )]

2 .
+ @5y {(ln2+1n)\l—1n()\l+)\2)) {Izﬂ(1n2+ln)\l+ln()‘l+)\2)) .

1 2 2 2

+ 3<(1112) +21n21n)\1+(1n>‘1) +ln21n()\l+}‘2)+1n)\11n()\1+)\2)+(ln()\1+>\2)) >}

+ (ln2+1n)\2-1n(}\1+A2)) liIz-Py(ln2+1nA2+ln(>\1+A2))

+ l<(1n2)2+21n21m +(1mn.) 2410210 (A, 41, ) HnA, 1a (A ) +(Aa . +1,9) 2 ) [}
3 2 2 172 2 1 72 1 72 j

where I, and y have been defined earlier. Since a Al, and XA, are

2 21’ 2

nonzero constants, it is obvious that the above expression ig
finite. Hence we see that the third assumption in a practical
example holds and can be verified.
At this point we want to show that the estimators that have
been proposed in Section 6.3 for the exponential parameters are
consistent estimators under the five assumptions given above. In .

order to prove this we will need the following lemma:

~(k7)

Lemma 6.2: If w7y as given by equation (6.35a), is the proposed

estimator of uj(_k ) for 4, k°=1,2,...,n, then uik )—uék ) tends in

probability to zero under the assumptions stated at the beginning
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of Section 6.4.

Proof: From the specification of our regression model by equations

(6.5a) through (6.5c) we may write

~ -, p M”"'l 2 ,+z, ’ »
pED Dy <-3—-J-—+1 BE(Y, (z,))-u* A <“L‘j— Bey
i i oM 2 i*] i
j=-M
(6.38)
Using the definition of the Riemann-Stieltjes integral (see Olmstead ‘

[1959], page 179) and the fourth and fifth assumptions of this lemma,

we can write

‘1_1
lim (k%)

Next consider the term
k’

M -1 z.+z.+1
by <J2—3—> def, (6:40)
j=-M"

Since we have developed this estimation procedure under the
assumption that M” is large enough so that Yy _M,=E(Yi(— ®)) and
b
Yy M"=E(Y1(+ ®©)), where M*“=M” " if an odd number of observations has
]

been taken but M”““=M“-1 if an even number has been taken, we may

write equation (6.40) as ‘
I‘i“
{(.J_.l:}_ > <_.L+_1__i> } (6.41)
i= -M “+1 iJ

If we can show that the variance of (6.41) converges to zero as

M* —> =, then we may apply a form of Tchebycheff's theorem given by
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Cramér ([1946], page 253) to conclude that this expression converges
in probability to zero. Using the first and second assumptions of
this lemma, the variance of (6.41) is given by
d2 M';‘Z '{P (z )}’2 Var (e,.) (6.42)
juaye4l & KL 1] )

where P ) has been defined in equation (6.37). From the third

k,_l(zj
and fougth assumptions of this lemma given at the beginning of Section

6.4, the expression in equation (6.42) tends to zero as M"° —> =,

since d —> 0 and the limit given by equation (6.36) exists. Hence

by combining the above results we may conclude that uik )-ugk )

converges in probability to zero and uik )is a consistent estimator
(k%)

of P

The lemma, which is presented next, is an interesting result
concerning the fourth and fifth assumptions used in Lemma 6.2.
Lemma 6.3: The condition d=0(M‘-e) for 0 < € <1 is a sufficient
condition for the fourth and fifth assumptions used in Lemma 6.2 to

hold.

Proof: From the hypothesis of our lemma, we know that d=0(M’_€)

Therefore d is at most of the order of M° °. However M,l_]_'il - M- "E=0 .
lim

for 0 < € <1, Hence Me —>

» 9=0. Also since d=0(M’-€), we know

that lin 4 = lim dM’£= constant < «», Therefore
Pt =€ .
M — O M M — 0

lim aM”

M’ —> ® T M > ®

ln  geel-e_

®©,
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Hence from our hypothesis we note that the fourth and fifth
assumptions of Lemma 6.2 are satisfied.

From the estimation equations for the elementary symmetric

RC)
r

functions, , r=1,2,...,n, of lnxl, 1nk2,...,lnkn given in

Section 6.3, we can easily see that these functions are rational

functions of the uik )'s. Hence from Slutsky's theorem (see Cramer

[1946], page 254) we conclude that Lﬁc), the estimator of Aﬁc) for
©)

r * From the method

r=1,2,...,n, is a consistent estimator of A
that we used in Section 6.3 to solve for the parameters

Al,xz,...,kn, these parameters will be continuous functions of the

Agc) for r=1, 2,...,n. Since the estimators Al,xz,...,xn of the

parameters Al,xz,...,kn are found by substituting the expressions

©

for Lr

in place of Aic), these estimators will be continuous

©)
r

~ ~ A

estimators Al,xz,...,ln are consistent estimators of Al,kz,...,ln

functions of the L for r=1,2,...,n, and we may conclude that the
(see Wilks [1962], page 103). From the above discussion we have
the following theorem:

Theorem 6.4: Under the assumptions of Lemma 6.2, the estimators

S

il,iz,...,xn, which have been found by the generalized Spearman
estimation procedure, of the parameters Al,kz,...,xn in the
regression model specified by equations (6.5a) through (6.5c), are
consistent.

Since we will be using the same procedure here to estimate

the linear parameters of our regression model as we used in Chapter

5, we will also have a theorem corresponding to Theorem 5.4 given by:
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Theorem 6.5: The estimators of the linear parameters in the
regression model, specified by equations (6.52 a) through (6.5c),
that have been found by the generalized Spearman estimation
procedure of Section 6.3 are consistent, under the following
assumptions:
1) The assumptions of Lemma 6.2 are satisfied.

2) The random variables €

1j are normally distributed.

3) The estimators of the linear parameters are continuous
functions. Since the proof of this theorem follows closely the
proof of Theorem 5.4, we will not repeat it here,

Now that we have established the consistency of the
estimators of the parameters in our regression model, we want to
determine the asymptotic distribution of the n x 1 vector of
estimators of the exponential parameters Al,A2,...,An. Before
deriving this asymptotic distribution we will consider the

following vector:

;i*)- u,(,*) = (I::f_l) -u{l) geece ’;](-n)_u](.f'l) s ;él)_ugl) ges ey

~ - ~ T

uén)-uén),..., il)-uél),...,uﬁn)—uin)) s (6.43)
where ;;k’)and uik’)have been defined earlier in equation (6.35a)

and Theorem 6.1, respectively. Now let us consider

w

RN R W Sl e o (6.44)

*
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where d, M”, and M"” have already been defined. Using Lemma 6.3 we
A 3
can show that M'lif> o d2‘ WM*#M”“=2 is a constant. Therefore,

using Lemma 6.2 and a convergence theorem from Cramer ([1946]), page
254), we conclude that the limiting distribution of the expression

in equation (6.44) is the same as the limiting distribution of
3
sid) / d2 YM“+M*“-2 , since

NN sy oM @
* *‘
3 = 3 + = , (6.45)

2 oo & Aemrz & TR

M”°-2 T
(d) _ (d) (@ (d) (d) (d) .
where €, j=EM‘+l 5 *j lj s 23 ""’enj 3 and
§§) deij(Po(zj), Pl(zj)""’Pn-l(zj))T where Pk’-l(zj) has been

defined earlier. With the above definitions and a direct
application of a multivariate form of the central limit theorem
stated by Cramer ([1936], pages 113-114), we may prove the following

lemma:

Lemma 6.56: Under the assumptions used in Lemma 6.2, the vector
3
(d)/ d° M"M”°-2 has a limiting multivariate normal distribution

(d) (d) )
lim *.
M® —>

with mean vector 0 and covariance matrix R
d (M”+M~°=2)
provided
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(d) (d)
lim E(e *e )

M —> «

1) (6.46)

d (MA+MA 4_2)
exists (i.e. the limit of each element of this matrix exists) and

not every element of the matrix is equal to zero;

~

M* -2
1im 1 2 2
2) - o WIS z J(t +t o+, .+t7) dF, = (6.47)
e L A n’ ¢y
2 2 L4 P
(E]+e oot )>E (M7 7-2)
3
for every £ > 0 where F, is the distribution function of E(d)/ a .

3
In some practical situations it may bé difficult to
determine whether the two additional assumptions of Lemma 6.6 are
satisfied or not. However, these additional assumptions are
satisfied in some reasonable and practical situations, as we will
show by considering a particular example. The particular example

that we will comnsider involves the case when

Niw

1

(d)/’d lj/ d2 has a N (0,02/ d) distribution, and this

3
example could arise when a normal approximation is used for the
distribution of binomially distributed random variables. This is
similar to the example considered earlier in our discussion on the
reasonableness of the assumptions stated at the beginning of
Section 6.4. The first of these two additional assumptions may be

verified in a manner very similar to that used to verify the third

assumption given at the beginning of Section 6.4. In fact, we must
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use that assumption in order to verify whether this first additional
assumption is satisfied, since the diagonal elements of (6.46)
involve terms of the form given by (6.3€), Concerning the second

additional assumption, for this particular example equation (6.47)

becomes
2
- tze—{tl/(20§/d) }
M’ -2 ‘1
1lim 1 5 / dt
M —> o M™4M™7-2 | " —— 1 °
j=-M7+1 j Zno%/d
> J
ti>£2(M’+M”-2)
* &
Let tl = ————————_  Then the above expression can be shown to be
less than or equal to
lim Moo-2 2
w e 1, claereen)
j=-M +1

From the assumptions of Lemma 6.2 stated at the beginning of Section
6.4, we conclude that this limit equals zero. Hence we can see that
the two additional assumptions of Lemma 6.6 are satisfied in at
least one reasonable situation.

Using the conclusion of Lemma 6.6 along with the fact that
3 1

S(*) (%) Z e on2 o .
(ug 7 = ug ") / d° (M™#M°7-2)" has the same limiting distribution as
3 1

ei?)/ d2 (M'+M"--2)2 , Wwe will expand the estimators of the
(*)

exponential parameters in a Taylor's series about the point yu

within the neighborhood |uik ) uik )| < 8 for all i and k” and
S(*)_ (%)

8§ > 0 where the vector u, "-u, ° .has already been defined earlier.
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By doing this we have

A=A I + F'(A(*) - (*)) + G” 48
~(*)_ (%) Ma T Ma (6.48)
D* = ‘IJ*
where
// )
F/
2 ,~ ~
A I
- . k . k
S R Fk“( 25l ~eny_ e S LT pp @
) duy My “=Hy ~8ul By " SUy
a A
£/ 551 ey Ml(( 5 < (*))
ou Uy =Hyg 3unn By THyo
/Gi
for k = 1,2,...,n; and G’= Gé where

P (k7)) (k7)
G =3 <:' ) ?, . (ui My )(ui, ~H; - )
i,k?,i%,k

a,,zx ' .

“ )
ol Vol 1 M )

for k = 1,2,...,n and l6k| < 1l, Under the assumption that the

~ A ~

estimators A R An have continuous second order derivatives

1 Agaees
(x")_ ”ik )I <

within the region |ui , we may use a proof similar
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to that used to prove Theorem 5.5 to conclude that

3
" 2 e . .
(A=-A)/(d” YM"+M”“-2 ) has the same limiting distribution as
3 1
A (% *
F~* (ui )-ui ))/(dz (M’+M"-2)2). From Lemmas 6.2 and 6.6 we

3 1

—

conclude that the limiting distribution of (A-A)/(dz(M’+M"—2)2)
is a multivariate normal distribution with mean vector O and

covariance matrix

. T
M }i’: - ( 3 1 >F‘E <E£‘.i)e§f) >F‘T . (6.49)
d" (M M7 7-2)

Combining these results we have:

Theorem 6.7: If ; represents the estimator of the vector

A of exponential parameters of our regression model found by the
generalized Spearman estimation procedure presented in Section 6.3,

A

if the elements of X have continuous second order derivatives of
. ~ (%)
every kind with respect to the elements of u, °, and if the

assumptions of Lemmas 6.2, 6.6 and Theorem 6.4 are met, then

3 1

(i-x)/(&f (M’+M"—2)2) has a limiting multivariate normal
distribution with mean vector O and covariance matrix given by
equation (6.49) as M° —> = .

As we did in Chapter 5, we now propose to obtain an
expression for the asymptotic efficiency of the generalized
Spearman estimators of the exponential parameters in our regression
model. From the ideas presented by Kendall and Stuart {1961],

we take as our measure of the asymptotic efficiency of our
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estimators, the following ratio:

Ve S {IE <332L> (agu, >T [|'a l}-l (6.50)

where L represents the likelihood function whose form will be

specified and Q represents the asymptotic covariance matrix of our
estimators as obtained from the results of Theorem 6.7. .
We will derive the expression for v when the assumptions

concerning the random variables of our regression model given at the

beginning of Section 6.4 are satisfied and the likelihood function -

is specified by

Lo “-1, 1 e {' %."Y*j'E(Y*j))TZQI(Y*j'E(Y*j”}
j=-M M M 3

@2m) | ):jl |
(6.51)

where

= - - T,
Y,, =| - 3 Zj = E(Y*j E(Y*j))(Y*j E(Y*j)) ; and in accordance

\v,,
n+l

with equation (6.5c) and the assumption I E(Yi(z)) = 1 for all z,
i=1




140

/E(Ylj)
E(Yzj)
E(Y*j) = .
E(Y,,) /
for § = - M7, -M"+1,...,0,1,...,M"~1, and/or M°. That is, we are ‘

agsuming that the vectors Y, 3 are independent each with a

multivariate N(E(Y*j), Zj) distribution. In order to find v, we need:

M: —_1 M +M M‘ ,-1

InL=-% 1n (2n) 2 --;'— I 1n|z |
j=—M’ j=_M‘ j
M°--1
1 T -1
-5 j=EM’(Y*j_E(Y*j)) Ey (TaymE(X,y)) (6.52)
and
M” -1
31lnL -1
3 = T ) Dij (Y*j-E(Y*j)) (6.53)
3=
vhere
; 3ECY, ) 3E(Y .)
Sl oy )
£ : :
E(Y,.) 9E(Y_.)
e Dl (6.56)
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Hence from the assumptions that we have made at the beginning of

Section 6.4 we have:

()

From Theorem 6.7 we have the asymptotic covariance matrix of A given

// l
-1 T
z Dbz, D",
iy o3

by
T M““=-1
F‘E(ei?)ei?) ) FT L FT W (f;z ) BT
j==M-
where
2
Po(zj) Po(zj)Pl(zj) « e« . P (zj)P
2
Po(zj)Pl(zj) Pl(zj) « o e P (Zj)P
_ 42 . .
wj“d . . .
2
Po(zj)Pn_l(zj) Pl(zj)Pn-l(zj) . o e Pn—l(zj
and
/E(eij) E(eljezj) . . ( ljenj)
E(eljezj) E(e j . o s E(ezjenj)
£l : :
2
E(eljenj) E(ezjenj) E(snj)

(6.55)

(6.56)

(zj)

(zj)

(6.57)

(6.58)
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and F” has been defined earlier. Therefore we may combine the
above results into the following theorem: .
Theorem 6.8: When the likelihood function of the vectors Y*j is
given by equation (6.51) then the expression for the asymptotic

efficiency, defined in (6.50), of the vector of estimators of the

exponential parameters reduces to the following expression:

M’--1 M~ -1 -1

lim { -1.T ) T

Vo= LY ooz Tol|l T FrW,X)I)F I}
M —> P %3 73 j=-M" J<:) 3

(6.59)

In Chapter 7, where a comparison of the various estimation
techniques discussed in this research will be made, the expression
given by equation (6.59) will be evaluated for some particular

regression models,




VII. COMPARISONS AND ILLUSTRATIONS OF THE

GENERALIZED ESTIMATION PROCEDURES

7.1 Introduction
In this chapter we will apply the generalized estimation

procedures developed in this research to various sets of data
concerned with experimental situations. The particular models
that we will be comsidering in this chapter are given by equation
(1.1) with n = m = 2, where we assume that LT is known. We will
work out some of the details of these estimation procedures and
in Sections 7.2.2 and 7.2.3, where the generalized partial totals
and generalized Spearman estimation techniques will be applied to
particular sets of data, we will also determine the generalized
least squares estimates of the parameters of interest. This will
give us some comparisons of the various techniques for particular
sets of data. Finally we will evaluate the expressions for the
asymptotic efficiency of our generalized estimation procedures
for some special cases, and this will be used as another
criterion for comparing these various estimation techniques.
7.2 Application of the estimation

procedures to specific examples .
7.2.1 Generalized least squares

In this section we apply the generalized least squares

143
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procedure to the experimental example presented in the article by
Galambos and Cornell [1962] where a mathematical model is
formulated to describe sulfate metabolism in patients. We may
think of this problem as a three-compartment mammillary (or
catenary) system where the radioactive tracer is initially
introduced into the first compartment and ultimately accumulates
in the second compartment. Figure 7.1 gives a schematic

representation of the compartmental system of interest. The

21

v

—
/AN
-

13

Fig. 7.1--Compartmental model for the data given in Table 7.1

numbered boxes in this figure represent the three compartments,
and the 1's in this figure represent the turnover rates or
transition probabilities defined in Section 3.1 of Chapter 3.
The observable random variables represent the proportion of
injected radioactive tracer present in the respective
compartments; and since the sum of the expected values of these
random variables is always equal to one, there are only two
independent regression equations. The set of independent

regression equations for this particular example is given by




—szj —63xJ
Ylj = ele + (l—el)e + Elj = fl(e,xj) + Elj
-Bzxj —63XJ
— - + - - —
Y2j 1 (91 64)e (1 61 ea)e + €2j

where 64 = (63—62)61(1—61)/[(63—92)Bl+82], so there are actually
only three independent parameters to be estimated. Using the
notation of Chapter 4 we have 0 = (61,62,63)T. The data for this
particular example is given in Table 7.1, where the values taken
on by the random variables Ylj and Yéj are denoted in the columns
headed by ylj and y2j’ respectively. All of the values given in
Table 7.1 were taken from the article by Galambos and Cornell
[1962], except the value of ylj for j = 1, which was extrapolated
from the earlier observations so that we could display the
generalized least squares procedure in its simplest form.

The first step in our generalized estimation procedure is
to obtain estimates of the quantities 011 = E(eij), Oyp = E(egj),
= E(

and ¢ j) for all j. Using the observed proportions,

12 £13%2
plots are made on semi-logarithmic paper in order to compute the
vector of preliminary estimates of the vector 6 given by

0= (0.381, 0.021, 0.197)T. Using the proportions Y15 and the

vector of preliminary estimates 06, we apply Hartley's modified




146

TABLE 7.1--Data to be fitted by the generalized least squares

procedure
’ "3 713 Y23
1 0.33 0.92 0.03
2 2 0.84 0.10
3 3 0.79 0.14
4 5 0.64 0.21
5 8 0.55 0.30
6 12 0.44 0.40
7 24 0.27 0.54
8 48 0.12 0.66
9 72 0.06 0.71

Gauss-Newton procedure as discussed in Section 4.2 to the first
regression equation of (7.1). After applying this technique to

the first regression equation of our model, we find the following

(1) _

vector of estimators of the elements of 6: 8

(0.5752, 0.0322, 0.1816)T. From equation (4.14) we recall that

011 9 €14C1%’ where the elements Elj of the vector €1 are given

in column (2) of Table 7.2. Similarly, using the observations y2j

from the second regression equation of our model given in

equation (7.1), we find 9(2) = (0.282, 0.021, 0.195)T. The

A ~

elements e,, of the vector €k defined in Chapter 4 are given

23
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TABLE 7.2--Deviations to be used to estimate covariance matrix

(1) (2) (3)

J elj €23

1 -0.04920 0.01287
2 0.00528 0.00340
3 0.02144 0.00107
4 -0.02093 -0.00339
5 0.00615 -0.00380
6 0.00121 0.00588
7 ~-0.00087 -0.00485
8 -0.00255 0.00442
9 0.00348 -0.00200

in column (3) of Table 7.2. The sums of squares of the entries in

columns (2) and (3) of Table 7.2 after division by N = 9 yield

~

L = 3.7832 x 107 and o), = 3.1787 x 107>, respectively. The

9

sum of the cross products of these columns after division by N = 9
- -5

gives 012 = -6.1292 x 10 ".

Having estimated the elements of the symmetric matrix O,,,
the estimated matrix is denoted by o,, and an estimate of Q is
given by @ = I(:)o**. Using the vector o8 of preliminary

estimates of the vector 8, we determine the elements of the
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matrices of‘ and y - of‘ defined in Section 4.3. The regression
equations in (7.1) with 08 substituted for 6 are used to evaluate
y - of, and in order to evaluate the matrix of‘ for this example,
the derivatives afl(e,xj)/aek and afz(e,xj)/aek for k = 1,2,3

are calculated with 06 substituted for 6 using the derivatives
864/89k for k = 1,2,3, Substitution of these quantities into
equation (4.13) along with the substitution of 6 for Q, leads
after one iteration to a new vector of estimates

16 = (0.30558, 0.01870, 0.14350)T. Using Hartley's modified

procedure, after nine iterations this iterative process gives us
6 = (0.07397, 0.00752, 0.09228)T correct to four decimal places.
Graphs showing the original data (x) and the fitted equations

are shown in Figures 7.2 and 7.3 for the first and second

regression equations, respectively, of (7.1).

7.2.2 Generalized partial totals

In this section we apply the generalized partial totals
estimation procedure developed in Chapter 5 to the set of data
given in Table 7.3. The data given in this table was
manufactured for the regression model given in equation (7.2)
below by adding random normal deviates to calculated expected

values. The regression model of interest is given as follows:
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TABLE 7.3--Data to be fitted by generalized partial totals and

least squares estimation procedures

Xj(=j) Y13 y§j=l—y2j Partial Totals
0 0.99580 0.98526
1 0.86755 0.90118 S11 = 5,23783
2 0.75378 0.78387
3 0.68462 0.72374 321 = 5.63595
4 0.58998 0.64451
5 0.49806 0.58602
6 0.49066 0.57477
7 0.35738 0.43660
8 0.31896 0.44126
0.32844 0.43487 512 = 1.96023
10 0.24684 0.34459
11 0.29593 0.38054 822 = 2.80562
12 0.18045 0.28662
13 0.25398 0.33810
14 0.17297 0.29868
15 0.16266 0.28096
16 0.15076 0.24881
17 0.12821 0.22204 513 = 0.95647
18 0.12233 0.24219
19 0.15341 0.29722 823 = 1.82865
20 0.13334 0.24112
21 0.08309 0.17590
22 0.09083 0.19781
23 0.09450 0.20356




1j

=-A. X,
CE B

Y2j 2 - (1—a2)e 2 (7.2)

il
=
1
123
o

Instead of recording the observations y2j on the second regression
equation of (7.2), we record yéj =1 - y2j so that

-Alx’ —Azx,
E(Yij) = aye I+ (l-az)e J will be of the same functional

form as E(Yij)’

For this particular example we have 24 observations on
each regression equation, therefore we divide each set of
observations up into three groups each containing eight
observations and form the following partial totals:

8q-1
197 j(gms v
for i = 1,2 and q = 1,2,3. The values for these partial totals
are also given in the last column of Table 7.3. Using equation
(5.12) we are now able to use the set of equations given below
to obtain estimates of the elementary symmetric functions of

—8k1 —8%2
e and e , denoted by L1 and Lz:
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S13lg ~ S19b T S5

Sy1kg = Syalq = ~So3 (1.4a)

or

5.23783 L2 - 1.96023 L1 = -0.95647

5.63595 L, - 2.80562 L = -1.82865 . (7.4b)
Solving the set of equations given in (7.4b), we find L1 = 1.14810
and L2 = 0.24706. 1In order to obtain the estimates of
-8x -8\
e and e we obtain the two roots of the following quadratic
equation:

w? - 1.14810 w + 0.24706 = O . (7.5)

The roots of (7.5) are given by w, = 0.86123 and w, = 0.28687.

1 2
Without loss of generality we will assume that Al < Az, and
therefore our estimates of Al and AZ are given by
A, = 0.01868 ="% 1n(0.86123) and A, = ¢ 1n(0.28687) = 0.15609,
respectively.

The next step in our estimation procedure is to estimate

the linear parameters, o, and @,, present in our regression model

1 2’

given by equation (7.2). Our observations given in Table 7.3
were generated by adding random normal variables to calculated

expected values and taking E(Eij) = = 0.001;

ez ) =0
257 T C22

%11

E( = 0,001; and E(eljszj) =01, = 0.0009 for all j.

1



154
Therefore in this particular example we may assume that the matrix
Q in Section 5.3 is known. Since there is only one linear
parameter in each regression equation of our model, we may

rewrite our regression model given in equation (7.2) as

-\ X “A.x, -A,X
273 173 273
Y..-e =a. (e ~-e + €,
1j 1 ) 13
-\, X “A.x., =-A.X
- 273 1'5__ 273
1 Y2j e = az(e e ) + €2j' (7.6)
If Al and AZ were known, then the usual weighted least squares

estimators of oy and ¢, are given by

- T.-1_ -1, T -1"
e = OO0y ) (7.7)

*
Z Z

~

where a** = (al,GZ)T’ D~ = <Z 9 > ;
Z 02z

-\ ~A =23\ -23A
- 2. T
Z = (0,e l—e 2,...,e 1—e )Y, Q= c**(g)l;

0.001 0.0009
o= {

. % X > . 2 »
A\ 0.0009 0.001 j> s I is a 12 12 identity matrix; and

. -\ -23\ -
- “liy e ieees e iy l-y.o—e ...
Y** (y10 ’y11 I ’y1’23 b 20’ 21 b b

'23A2 T

1-yp,37¢ )
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Using the same technique as we used to derive equation (5.17),

we substitute the estimators Al and Xz into equation (7.7) giving

A ~

us the estimates of the parameters oy and s denoted by al and Oys

respectively. Applying the above procedure to this example we

~

find o = 0.12880 and a, = 0.25528.

In case we do not know the true values of ¢ 022, and

11’

012, we use the same method as we used to derive equation (5.17)

11° 92 . Substituting Al and AZ

into the regression equations of our model, we first obtain the

to obtain estimates of © 29 and ©

12

single equation least squares estimates of the parameters oy and

17 0.10900 and @, = 0.27569. Using

= 0.00064; ©

A

a,. These are given by a

equation (5.17.1) we find 911 922

012 = 0.00058. Substituting these estimates into the matrix @

= 0.00074; and

in equation (7.7) we find our new estimates of al and az given
by 0.14735 and 0.27007, respectively.
For comparison, we will obtain the generalized least

squares estimates of the parameters A_, A @, and @ Since

1 2 2°
we have already outlined the basic steps of the generalized least
squares procedure in Section 7.2.1, we merely give the results
here. The complete results of the various calculations in this
section are summarized in Table 7.4. Across the top of Table 7.4
are listed the various estimation techniques used to obtain the
values listed in the table and down the first four positions of

the first column of this table are listed the various parameters

of interest. In the last two rows of this table are listed the



156

TABLE 7.4--Estimates of parameters in equation (7.2)

Parameter Generalized Partial Totals Generalized Least Squares
Q Known  Unknown 2 Known  Unknown

oy 0.12880 0.14735 0.09461 0.09504

ay 0.25528 0.27007 0.25409 0.25388

Al 0.01868 0.01868 0.01546 0.01528

Az 0.15609 0.15609 0.15229 0.15261
Figure 7.4 7.6 7.8 7.10
Number
Figure 7.5 7.7 7.9 7.11
Number

various figures where graphs of the original data and the fitted

regression equations of our model appear for a visual comparison.

7.2.3 Generalized Spearman estimation

In this section we apply the generalized Spearman estimation
technique, developed in Chapter 6, to the set of data given in
Table 7.5 generated from an experimental situation similar to that
considered by Box and Draper [1965]. The experimental situation
of interest involves a chemical reaction in which a product 3 is
decomposing to form product 2 which in turn decomposes to form

product 1. Schematically we may represent this chemical reaction



Xe

V1A 12 8T S1 ¢TI 6 9 € 0
_x 11
(1.1/ »
x x/wmllfﬂ/x
-——X X %
////(. N-
X el _ X
X NG
- €
‘umouy ST ¥ usuym (z°/)
Jo Go.wu.mﬁ._uw 1SATY 9243 103 ‘w.
~ sTe3o3 Ter3aed poziTeisusld .
[Ta}
= £q p®23313 uorlenbs pue ejeg--y-/ 3143 x// <
AN 16
X
N ..
% .
/., L
X
,/.
\ 4 8
\x
W e
e
AHQ+H
(®)"pa




X<

e TC 8T ST - m o m o
f T T T _ . “ ‘ \ﬂ
/
%/
, \\ .H-
, /
, \\
/
X 1z
x
.\. z m‘
| MW\\..
, - 1%
, X X
, ® (z*'L) 30 uorienba puodas
b ay1 103 H°/ *81d se sues--¢°/ °31g .\_:.\ )
d
| X ..\\\ o.
X .\\\\\N
P4 e . N..
PR .
o 18°
X
| ‘m.
,NO+H
| AAvnv va



159

K¢

©t 1¢ 8T ST 1!

X X b4

T —— X X X

/
X X
- /l%/: X %
//.//. X
X

‘umouNun ¥ Yiis
y°( *814 se swes--9°/ ‘314

A
/m 0,1
() 'x)a



e

ma

0+ﬁ

V14 ¢ 81 ST 1 6 9 € 0
\\\
e
A
%/
o ‘umouqun 5 yirm X
. G'( *3T4 se sueg--/°*/ ‘814 ~
(¢

bkt




161

e

kXA T¢ 81 T ZT 6 9. € 0
J ] T i T T 7 e
. X
XMy 11
¥ x X ¢
— 14
X X
X

-~ m.

*soienbs 3seaT poziTeiausd g ..

£q pe131T3 u9aq sey uorienbs v

oy3 3dsoxe 7 *81] se suwes--8°/ ‘314

4 ¢

1 g-

4y

w.

- m.
% 0:1

'T ¥
()32



162

¥¢

*(z°L) 3o uorjenba puodas $
?y3 103 Q°/ *81J se swes--5°/ 81 -

1 6

0:T
z +
((x®)*x)a



X

%2 12 8T ST Al 6 9 € 0
T L 1 T T _
3% 1t
x  no¥ox
x txi//x// X
e X
//l/ -4 N .
X /.n
X “€
N
X
dy
o
O ‘umowun ¥ yitm
4
g8°( 814 se swes~-0T", ‘314 X le-
Jg*
- N.
P w .
16
/M,o i
((® X3



T

[4 8T ST AN

164

rumouyun ¥ Yy3iTm
6°L ‘314 se suweg-~I1'/ *31i

| g°

C0°T
.N+
((x)"3)3




165

by the following diagram:

32 | T12

TABLE 7.5--Data to be fitted by generalized Spearman and least
squares estimation procedures

] * 2 Y13 Y23
-5 2 ~1.38630 1.00000 0.00000
~4 2 ~0.69315 0.92696 0.01463
-3 1 0 0.87213 0.02986
-2 2 0.69315 0.75029 0.04675
-1 4 1.38630 0.60339 0.10608

0 8 2.07945 0.37711 0.16495

1 16 2.77260 0.18042 0.19098

2 32 3.46575 0.05943 0.14191

3 64 4.15890 0.02628 0.09154

4 128 4.85205 0.00000 0.00000

In the above diagram Tog and T12 represent the reaction rates from
product 3 to product 2 and from product 2 to product 1,
respectively. We now note that we have brought this problem into
the same framework as the compartmental problem discussed in

Chapter 3. Therefore we have a system of differential equations



166

corresponding to those given in equation (3.1) for n = 2. For

this particular example let E(Yi(x)), i=1,2,3, represent the
expected proportion of product i present at time x and let the
following boundary conditions be satisfied:

1) E(Y3(x)) =1 at x = 0; and 2) E(Yz(x)) = E(Yl(x)) =0 at x = 0.

Corresponding to equation (3.7) we have the following system of

equations:
-A,X ~A, X -A,X
_ 1 2 3
E(Yl(x)) = a;,e + o, e + a;qe
-A.X -A.X -A.X
B 1 2 3
E(Yz(x)) = azle + azze + a,qe
—xlx —Azx —Aax
E(YB(x)) = o€ + oy, + ¢, (7.8)
12
where A, = Toa3 Ay = To3 A, =05 @, =———— ; a.,, =1-o0,,;
1 23’ "2 12> 73 11 112793 12 11
a3 =15 @y =7 %y T '_Tg%‘—; 93 = 03 T %3 70 and
12723 ¢ .

Ggy = = Tyge Since E(Yl(x)), E(Yz(x)), and E(Y3(x)) represent

the expected proportions of the various products present at time X,

3

we have the additional restriction that I E(Yi(x)) = 1 for all x.
i=1

Hence there are only two independent equations in (7.8), which we

2

take to be the first two. If we let al = —all, x = e , and
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E(Yi(x)) =1 - E(Yl(x)), then the equation for E(Yi(x)) becomes
E(Yi(z)) = alexp(—Alez) + (1—al)exp(-kzez) (7.9a)

which is of the same form as equation (6.6a). In addition, if we

let @, = %y then the equation for E(Yz(x)) is given by

= oy o2y _ .z
E(Yz(z)) = azexp( Ale ) azexp( Aze ) (7.9b)
which is of the same form as equation (6.6b).

[+ ]
By the evaluation of the integrals u{k ) o f zk dE(Yi(z))

and uék ) - f zk dE(Yz(z)) for k” = 1,2, and by using the same

techniques as presented in Section 6.3, we arrive at the system

of equations corresponding to (6.25b) and (6.33e) given by

© _ @ _ _
K hy™ = - Ko
P (C) = - -
K5 A K;, (7.10a)
) _ N (9 ] _ (D )
where A1 = lnA1 + lnxz, A2 = lnxllnlz, Kll = Uy + Il’
_ @ i DR ¢ ) UUR ) W
Kig =uy "+ I, = 251K 05 Koy = w75 Kyp =y 2L,K5y5
< t " 2 -t
I, = [ (Int)e "dt; and I, = [ (1nt)“e “at.
[ [s]

All that we now need to obtain our estimates of the elementary

©)
1

C .
symmetric functions A and Aé ), are the estimates of
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"il) (2) uél),

(2)
’ul > 2

and u These estimates are found from

equation (6.35a), and the values for this particular example

are given by uil) = ~1.59148;
" (2)
2

uiP= -a.28851; wit = ~0.54531;

and u = -2.65392. Using these calculated values to obtain

our estimates of the K's, the system of equations given in (7.10a)

becomes

-2.16870 Lic) - Léc) = 4.81403

(C)

-0.54531 L1

3.28345 . (7.10b)

Solving the set of equations given in (7.10b), we find
LiC) = -6.02125 and Léc) = 8.24425. In order to obtain the

estimates of ln)\l and lnx? we obtain the two roots of the following

quadratic equation:

W + 6.02125 w + 8.24425 = 0 . (7.11)

The roots of (7.11) are given by Wy = -3.91595 and vy = -2.10530.

Without loss of generality we assume that Al < AZ’ and therefore

our estimates of xl and Az are given by Al = e-3'91595 = 0.01990

-2.10530

and i = e = 0.12181, respectively.

2
The next step in our estimation procedure will be to
estimate the linear parameters, al and az, present in our
regression model given by equation (7.2). Since we generated

the observations given in Table 7.5, we know the covariance

matrix of the random variables Elj and EZj' Using the
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observations from Table 7.5 for j = -4 through j = 3, we use a
weighted least squares procedure to estimate the parameters
oy and a,. We merely give the results of this estimation here,

since the procedure used to estimate ay and o, has already been

2
outlined in Section 7.2.2. In order to obtain a comparison of the
estimation procedures, we also obtain the generalized least
squares estimates of the parameters Al’ Xz, al, and a2 for this
example. The complete results of the various calculations in

this section are summarized in Table 7.6, which is arranged in

the same manner as Table 7.4.

TABLE 7.6--Estimates of parameters in equation (7.8)

Parameter Generalized Spearman Generalized Least Squares
al 0.05501 0.09231
az 0.30899 0.27832
Xl 0.01990 0.01813
lz 0.12181 0.14239
Figure 7.12 7.14
Number
Figure 7.13 7.15

Number
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7.3 Evaluation of the asymptotic
efficiency for various models

7.3.1 Generalized partial totals
estimation procedure

In Section 5.4 we stated that we would evaluate the
asymptotic efficiency of the generalized partial totals estimators
of the exponential parameters for some particular regression
models. The expression for the asymptotic efficiency of the
exponential parameters has been defined earlier in equation
(5.42). 1In this section we evaluate this expression for some
particular regression models of interest.

First let us consider the regression model given by

for j = 0,1,2,...,24~1. 1In addition, we assume that the random
variables elj are independent each with a N(0,0z) distribution.
With these assumptions we have satisfied the assumptions about
the random variables given at the beginning of Section 5.4,
where some of the asymptotic properties of our generalized

partial totals estimators were discussed. The likelihood function

for our observed random variables Y1j is given by

2M-1 =X
L= 1 S — exp <- —%(Ylj-ale ! j)2> . (7.11)

j=0 /&woz 20
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We observe that

2M-1 AqX “A X
1nL o 1
koo 23 xe @ mae U, (7.12)
1 o j=o J
and we can demonstrate that
2
2M-1 , -2).x,
<ax =—; r xe LT3 (7.13)
1 j=o J

Using the results from Section 5.3, we recall that

%X, = hj and find the generalized partial totals estimator for

3
Ays denoted by il’ given by

§
PN _ .l /_
M 1“( 12> (7.14)
_ L M1 _ ; 2M-1
where S11 =M jzo ylj’ 512 = ﬁ.jin ylj’ and J = hM is the

constant length of the domain of each partial total mentioned
in the third assumption of Theorem 5.1. Using the results from
Theorem 5.5, we find the asymptotic variance of the generalized

partial totals estimator of Al given by

Var(A,) = 3 FOF . (7.15)

For this particular example @ = ME(E*;EZ.); € g0 ='% L



3 A
T 1 1
€ = (e €, . R dF=\— —— .
xy = (1508 5aa) 5 20 <a§" Lg w 3 lg -y )
11 x% k% 12 k% Kk

9 ~x,J AT =Ad

o 0 o, (1-e ) a,e - (l-e )
= : i . L
Hence <O 02> » and since Y, =< >‘1‘] 3 >‘1J >

Al —Al
we note that F = _le s —AlJ 'AlJ ‘> . Combining
o, (l-e ) o e (1-e )

these results we find

2.d
- ozki(1+e Ly
Y X (7.16)
M 2. Mo
Mal(l-e )

Next consider the product

2A1J

2
am>2 Var(r,) = MO DS
A arity R b

1 (1-e 17y2 i

E (7.17)

The last term in braces is the only one that depends upon M, and
from the assumptions of Theorem 5.1 and the definition of a

definite integral we have
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- _ . ~ J.
lim 1 2? l(hj)2 . 2k1hJ _ 1 lin 2? 1 3 )ﬁ -2klﬁj 3
Moo M J Moo | Mi/ ¢ M
j=o j=o
2J
-2\, t -4).J =-4)2.J =42,
='% f t2 e 1 dt = ——lg (1-e =4 Je —8J2A 2 e 1 ) .
1 1
0 43X\
1
(7.18)

Using the above results and the definition of the efficiency, Vv,
of the estimator Al given in equation (5.42), we have the following

expression for this efficiency:

-A,J
WA I(1-e 142

VTTTTRg g D3, , g (7.19)
(1+e Y(1-e —4A1Je _8le e )

It is interesting to note that the expression for v is independent
of the parameter oy and is a function of AlJ only. As AlJ > ®

it is easily seen that v -~ 0; and as A.J > 0, by :a repeatéd

1
application of L'Hépital's rule, it can be shown that v -+ 0.1875.
In Table 7.7 we have given the value of v for various values of
AIJ. By an examination of Table 7.7 we can see, for this
particular model;’that the efficiency of our generalized partial
totals estimator of the parameter Al achieves its maximum value
around AlJ = 0.7. In addition, the efficiency does not vary a
great deal for values of AlJ between 0.5 and 1.0.
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TABLE 7.7--Values of asymptotic efficiency of the partial totals
estimator of the exponential parameter

XlJ v AlJ \
0.0001 0.18753 0.70 0.26457
0.001 0.18769 0.71 0.26456
0.05 0.19676 0.75 0.26414
0.10 0.20573 0.80 0.26287
0.15 0.21432 0.85 0.26078
0.20 0.22245 0.90 0.25792
0.25 0.23004 0.95 0.25433
0.30 0.23702 1.00 0.25006
0.35 0.24331 1.20 0.22736
0.40 0.248386 1.40 0.19857
0.45 0.25362 1.60 0.16742
0.50 0.25756 1.80 0.13691
0.55 0.26063 2.00 0.10908
0.60 0.26283 3.00 0.02680
0.65 0.26414 4.00 0.00517

0.69 0.26456 5.00 0.00090
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The next regression model that we want to consider is

given by the following set of equations:

<
l
e
o
+
Q
o
L
+
m
]

E(Ylj) + €

1 11 12 1j 1j

Y,. = a

23 (7.20)

v
+
™

i}

E(YZj) + €2j

for j = 0,1,2,...,3M-1. Ve also make the additional assumption
€13
that the vectors <€ J) are indepcndent with each vector having
23
a bivariate normal distribution with mean vector zero and
- 11 "12 , .
covariance matrix I = o . With these assumptions the

12 %22

likelihood function is given by

3IM-1 T -1
L= 1 1 exp{-—[Y -E(Y, )] I 4 %5 -E(Y, )]}
=0 em|zf2
M-1
1 1 T ~1
= 3M exp{"— Eo [Y*j_E(Y*j)] z [Y*j-E(Y*j)]}
Mgz I
(7.21)
where Y*j - E(Y*j) = (Ylj-E(Y ), Y E(Y )) Using equation

3M-1
ol ) -1 T
(5.45) we note that E( nL> < lnL> 2 D z Dj where
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AE(Y. . AE(Y,,, . - -
( lJ) (YZJ) /—a‘ X.e Alxj -0,.X,.e Alxj
=~ = 1155 2175
1 1
D, = =
3 . ) _
E - -
B(Yy,)  9E(Y,,) A% A%,
—alzxje -azzxje
3, ax,
(7.22)
Setting xj = hj and J = hM, we determine that
IM-1 A.. A
‘L. D.Z—l § =<All A12> where
j=0 3 21 “22
3M-1 -2\, X
112 12 22 2 1%4
All = (o a.11+20 alla21+o a21) jio xj e
112 . 12 222  Ml/; N2 -ZAl(ﬁj)
= (o all+20 alla21+o a21) Jio (ﬁ J> e 5 (7.23a)
11 12 12 22
A, = Ay = (0 ag 0,540  Tagjay+0 oy puy F0T g 105))
3M-1 2 -()\l+>\2)xj
I Xx.e
j=o 3
11 12 12 22
= (07 00540 0g0y)F07 a0 407 g1 05))
3M-1 2 ~(040s) B9)
J 1727 Y% .
b M h| e ’ (7.23b)

j=o
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M-1 =22 ,.x
112 12 22 2 2 2%
A22 = (o a12+20 a12a22+0 a22) on Xj e
12 ., 12 22 WL /5 N2 26
= (o a1y +20 a12a22+o a22) on (ﬁ J> e 3 (7.23¢)
and
11 12

-1 o g
I = 12 22 .
o o

Next we want to determine the expression for the asymptotic

A
covariance matrix of the vectot<;\1>, which is the vector of
2

A
generalized partial totals estimators of the vector <}\1> .
2

Without loss of generality let us assume that )\l < )\2. Then the

estimators of A, and A, are given by the following expressions:

1 2
" 1 1
= - — = - = .2
)‘k v 1n Vi 3 In W, (7.24)
where
v = %{Ll+(-1)k-l /Li-l;Lz }, (7.25)

for k = 1,2. That is, wl and w2 are the roots of the quadratic
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equation

2
w - L1 w + L2 =0

where L1 and L2 are the estimators of the elementary symmetric

—Ath -AlJ -A,hM -A,J
e and e = e found by solving

1]

functions of e

the equations

S12L1 ~ S1alo = 513

i

SZZLl - 321L2 = 523 s (7.26)
— 1 qM-1
where §, =~ ) y for 1 = 1,2 and q = 1,2,3. From
. i
e M ya(q-1n 1
M
Theorem 5.5 we note that the asymptotic covariance matrix of i
2
is given by
1 T
§ FE@DE (7.27)

where a typical (k,iz+q—1)th term of F is given by

911 912

for i, k = 1,2 and q = 1,2,3; I =<012 022

‘> ; I is a 3 x 3
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identity matrix; S, ., = (5 T and Vyu =

11°5127513-5212572°523)

(¥

T '
11?w12’w13’W21’w22’W23) where the Wiq s have been defined

earlier in equation (5.23a). It can be shown that

B B
1 T _ 1/°11 "12
v F(Z@I)F = M(B B > where
21 22

N DR C DR C X

**

2 o 2, 2
K )G L ) (Fea) ]
55, S..=¥ 35,5 Spx=

551 SV ax 22 Skk k%

(2 >< -l L X Sl

(2 >( D)l

(7.28a)
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3 ax 32
127 %17 n| X \as L \3§12 |

** **

(X)'}

T >< Sl L EE),

2N oA
() ()L ]
3523 39S S, .=V

23 Kk kK

/ax /BA \ . oAy 3,
), )

+ o —
12 \ = \
L\\as 21 asllzj Ses=Y 3s

(><>‘ (B

** **

<“1>( )l L@ )<”2>'— N

(7.28b)
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and
K“ ) ( 2
B =0
2" n L) ( )
BS L Sya= I
ax 2 aiz 2
) ( EC)
BS =W** aS23 Spa=Yax

”"12[(“ >< >| ( >< >|§**=w

(@)L T

At the point ¥,  we can show that w, = e and w, = e .

Therefore, from (7.24) it can be seen that

oA ow
M oL ( k| , (7.29)

for k = 1,2. In addition we can show that
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(7.30)

for k = 1,2. We now see that we will need the expressions for

3L
(—_Tk—l__ ) in order to determine the elements of the matrix
=y

3Siq Suex=Yix

1 .
ﬁf(z(:>I)FT, and we have listed these expressions in Table 7.8.
It can easily be seen that each element of the matrix

%F(Z(E)I)FT has a common factor'—%—. We factor this term out
JM

of this matrix and multiply each element of the matrix

3M-1 1T
z DjZ Dj by it. This means that the only elements of our
j=o

expression for the efficiency involving M are terms of the form

3M-1 -AxX, 1
I x, e J = Using our previous results and the definition

j=o 3 M

of a definite integral, we can show the following:
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TABLE 7.8--Expressions for quantities appearing in equation

(7.30)
BLl | -A J—XZJ BLZ I —AlJ—XzJ
I =-e C,,/E —_ =-e Cc,./E
8S. . S,,=¥ 1171 5. 5. =y 211
1] k% k% 11 V&% k%
JL -A.J =A.J oL =A,J -AJ
1 1 2
7:T"L~ =(e +e )C.,/E “:;—L_ =(e 1 +e 2 )C.,,/E
3S.. S, =¥ T 21°1
12 TERx Kk 12 k% k%
aL L
1 2
- = -C../E — = -C../E
= & _ 11° 71 - = 21/ ™1
8513 Sua=Yix 9515 SpuYus
BLl —AlJ—AZJ 8L2 —AlJ-AzJ
e = e C,,/E —_— = e C,,/E
35,. S, ,=V e 22/%1
21 TRk k% 21 kA Tx%
L -2, J =-A,J oL =A.J -=A,Jd
-:g"__ =-(e Ve 2 )C.,/E 'f:g—L_ =-(e Vie 2 )C.,./E
38, S, =Y L N T 22"%1
22 “kk k% 22 Skk k%
oL oL
1 2 =
s ls o, 10 5 lg L, 2
3 23 sk 23 Pxx k%
-A,J -AzJ
C11 = azlJAZ(l-e ) + azlel(l—e )
=2, J -AZJ
C12 = allJAZ(l—e ) + alszl(l—e )
=-A.J —AlJ -AZJ —AZJ
C21 = a21JA2e (l-e ) + aZZJAle (1-e )
-AlJ -AlJ -1, J -A2J
022 = alleze (l-e ) + alszle (1-e )
-\, J -A,J -A.J =-A,J
1 2 1 2
E1 = (l-e Y(1-e ) (e -e )(alza21 alluzz)
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J,
1lim 3»21 1 x2 e-xxj 1 _1 lin 321—1 <_J- j>2e-2x(MJ) J_1 ?iz e-)\t i
Moo 420 3 D j=0 M M3
-3A\J -3\J -3AJ
= (2-2e -6)1Je —9A2J2e >/A3J3. (7.31)

After the determination of the form of each of the
elements in the expression for the asymptotic efficiency, v, of

~

él , we let2=<
hxz

0.001 0.0009

‘> , O =1-qa,,, O =1 - a,,,
0.0009 0.001 12 11° "22 21

and evaluated the asymptotic efficiency for the following ranges

of the parameters: 0.10 < a,. < 0.80, 0.25 < a, < 0.90,

11 2
0.004 §_JA1 < 1.9, and 1.0 < JAZ < 4.,0. For the particular
models considered, we found that in every instance v < 0.002.
However, it was possible to note during these calculations that
v did achieve its smallest values when IJAl - JAZI, or
equivalently le - A2|, was relatively small.
7.3.2 Generalized Spearman estimation
procedure

In this section we evaluate the asymptotic efficiency
of the generalized Spearman estimators of the exponential
parameters for some particular regression models. The expression

for the asymptotic efficiency of the estimators of the

exponential parameters is given in Section 6.4 and defined in
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equation (6.50).
The first model that we consider is the case whenn =1
and the random variable Ylj represents the proportion of

"successes' in n* independent binomial trials. Therefore we may

rlj
write Y., = - = and we assume that
lJ n*
%3
E(Ylj) = exp(—Ale ) (7.32)

where the values of zj have been specified in Section 6.2 for

j =-M", -M"+ 1,...,0,1,...,M”“. This is the same model and
experimental situation as considered by Johnson and Brown [1961],
and also this model is among the general class of models given
in equation (6.5c) with n = 1 and @ = 1. Using the same
assumptions as stated in Section 6.4, we may write the
likelihood function as

oda

n*-r

M n j> 1j 1j
1- (7.33)
j=§M’< Py le)

t
[}

where plj = E(Ylj). It can then be shown that

2
(r}.—n*plj)

s1aL\? M (1) 2 - H
3 = @ ) 3 2
1 Jz_M Plj(l'Plj)
D -n¥* -n*
W (ry 5Py y) (715 7WPyy )
s 1 el
s \P1y M P15¢
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3P4
where p{j) = lJ/BAl.

s ()"

Hence we now have the following expression

2 M*”
*
E(————ii““) I G (1))2 e (7.34)
1 j==M" P1j

From the results of Section 6.2, we note that the
estimator of ll is given by

~ -r *U{l)

A, = e e (7.35)

1
where

- M -1 z,+z,

uil) - 5 < j J+l> by, (7.36)

j=_Mn 2 J

and ylj represents the observed value of Ylj at the point zj and

= - . . th
Aylj yl,j+l ylj From Theorem 6.7 we note that the

A~

asymptotic variance of Xl is given by

M*"-2 p,,(-p
F’{d2 R B } (7.37)
j=-MHl o

where
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3* -¥ -u{l)
“1 !

Hence the asymptotic variance of Al is given by
2 2

Al d

n*

M*7=2

j=EM'+l P1j (1—p1j). (7.39)

Combining the results from equations (7.34) and (7.39), the

reciprocal of the asymptotic efficiency of Al is given by

(1),2

2.2
M- (p ) 22a® wo--2
%=M‘ }_i:w<n* 3 13 ><1* I pyyQ- plj)>
J=-M~ plj(l-plj) n ju-MT#1l
.. (l) 2
M
2 lim < )( )
=X e, o\d I 13-Py4)
1S S e plj(l-plj oo TP

[ e @n? 7
= Al L/P dz J[;l(z)[l-pl(z)] dz (7.402)

<o P1(2)(Q~p;(2)) o
W ap,(2) z
where p;" " (2) = =33 and p,(2z) = E(Y,(2)) = exp (-2,e7). If we
‘1

make the substitution t = exp (—Alez) in the last two integrals of

equation (7.40a) then

1 1 2
1 ne O T}

(o] o

ox
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v = 26 = 0.87705. (7.40¢)
7 1n2

It is interesting to note the high asymptotic efficiency for this
model, which verifies the result quoted by Johnson and Brown [1961],
and also to note that v is independent of n*.

As an extension of the results just presented, next we will

consider the case where Y,., =

* *
13 rlj/n , Y2j = rzj/n , and T3 and T3

are random variables having a multinomial distribution. For this

particular case we assume that

Z VA
= - h| — _ i\ =
E(Ylj) , exp ( A8 ) + (1 “11) exp ( A e ) P1j

and
z, z,
E(Yzj) = 1-a,; exp (-Aje I - (1-a,,) exp (-),e Iy = Pyy»
(7.41)
for j = - M”, -M"+1,...,0,1,...,M"", which is the example given by

equation (6.5c) with n = 2. Using the assumptions of Section 6.4,

the likelihood function for this example is given by

*
M7 * T r n -r,.-Y,.
_ ! 1j 2j _ 15 “2j5
L= P15 P2j (1-p147Py5) e

tr. 1(n -1, ~r5.)!
157723 13 23

(7.42)
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p
Bkk 1j

3=-4"

plj(lnplj‘pzj)

+ p2j

and

- * *
(k) [(1'P1i)(r2j‘n sz)+P21(rlj“n p11)

M/w % *

I}

(7.43)

, M”” -k *
31nL 3lnL \» M| Q-p, ) (x,.-n p,.)+p, . (x,.-n p,.)
) () T, (] S mt

j=-n*

|

+ péi) [

plj(l—plj-ij)

* *
(l-plj)(rzj-n p2j)+p2j(r11—n plj)}}
ij(l-plj-ij)

Plj(l'Plj'sz)

* *
(1‘Plj)(rzj-n ij)+p2j(rlj_n pl

* *
(1“p2j)(r1j‘n Plj)+P1j(r2j‘n sz) ]

(2)
e[

pzj(l-plj—pzj)

ol
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- * *
M {p(l) [ (1'P2j) (rlﬁ—n Plj)'h)lj(rgl'n pzj) ]
.\ P1j —

-M

Plj (1"Plj‘P2j)

* *
+ p§;>[:<;-plj)(r2j-n Pg;)+P,yy (ry =0 Py ;) ] }‘
‘ ij(l—plj—pzj) )

* *
(2) (l-pz_j‘) (rl_i‘-n Plj 4)+plj»(r2j “-n le‘)
P13+ 7P13 P25

* *
ZJ sz‘(l"?lj ;“sz a) ' j

(7.46)

where pig)

= apij/axk. From the assumptions that we have made about
*
the random variables rij’ we know that Var (rij)—n pij(l—pij) and

*
Cov (rlj,rzj)——n pleZj' Hence we may conclude that

o (oL N7 &M 1
3

k j=-M- (l—plj-pzj)
(k),2 (k)2
plj P24 15 P2j3

(7.45)

for k=1,2, and
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( 31nL><alnL> { 1 }
oo (1-p) -p,.)

p b (2) 5.
PLILIED o0 SO DenDe) a0
P1j P23

Next we want to determine the expressions for the asymptotic
covariance matrix of the generalized Spearman estimators of the
l -~ — . ”
vector(x"z). Let ij =1 p2j’ then both plj and ij fall under the
classification of Case 1 of Chapter 6. Without loss of generality
let us assume that Al > Az. Then the estimators of Al and Az are

given by the following expressions:

~ w

A, = e k, (7.47)
where

1 {' (©) ¢// 2.
.5 k=1 / (©)  , ()

Ve = 2 L1 + (-1) Ll 4L2 ’ (7.48)
for k = 1,2,
That is Wl and w2 are the two roots of the equation

wl-Lw+L, =0 (7.49)

1 2 ! ’

(©)

where L{C) and L2 are the estimators of the elementary symmetric

functions of lnA and.lnk2 found by solving the equations

1
i (C) ) _ 7
K by 'Ly 7 ==Ky
R, 1O~ 19 - _k

214~ 22 (7.50) .
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A _ I\(l) . ~ _ A(z) _ ~ . - _ I\‘(l) .
where Kll = ¥y + Il, K12 = + Iz ZIlKll, K21 = My + Il’
s = .(2) - " . (1) (2)

and K22 = W, + 12 ZIlKZl. The expressions for My and My

are given in Theorem 6.1 where pl(z) = E(Yl(z) = 0,,8xp (—Alez)

+ (l-a,,) exp (-A ez), and the quantities u‘(l) and u’(z) are
11 2 2 2

defined in the same theorem using pé(z) = 1—p2(z) = l—E(YZ(z))

= .

z z, . :
21 exp(#Ale ) + (1—a21) exp (—Aze ) in the place of pz(z). The

@9 (2) (1) .(2)
1 % oM 2

estimators of u , , and u are defined in equation

(6.35a), where we use the observations yéj =1~ y2j in the place of

(1) " .(2)
2

ij in My and . From Theorem 6.7 we note that the

A

: : , A
asymptotic covariance matrix of <il> is given by
2

F*Q FoL (7.51)

where F” has been defined in connection with equation (6.48) and

,plj(l-plj) Zijlj(l-plj) P14P23 Zijljpzj \

g=é? M,g_z 2ijlj(l—plj) 4Z§P1j(1‘P1j) Zijljpzj 4Z§p1jp2j \
n" j=-M-+ P12 22 1P .Pys Py (1-pyy) 22jp2j(l-p2j)j
ey bRy 22 1py3 (1py ) 4230 1Py ),

i
-

(7.53)
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1
It can be seen that the factor p* in the asymptotic covariance

.

31nL\/ a1aL \¥

*
matrix cancels with the factor n in the matrix E <BA % / .

A
Hence our expression for the asymptotic efficiency, v, of <;\l>
2
*
will be independent of n . We now factor out a d from the

asymptotic covariance matrix and multiply this d times the matrix

T
E<S§HL><—2—F—I‘-> . After doing this we find the reciprocal of the

asymptotic efficiency to be given by

T
1 lim 3lnl  lnL 1. .1
VoM — o | 9B 5 3 Il gF oF
BB, BB, BB, , BB\
Iy
A AAp,| BB, BB, , BB, , BB, )
- | P
S )
BBy BB4,) BB44 BB,
DB-.~ BB BB BB
42 43 44
41 , (7.54)

where the expressions for the AA's and BB's are given by the

following:

sy = [11/0p, @2, ) HeP 20)* 1A-py @) /o) @)

+o{1 @) 21 0-p, @) /o, ) 142050 3P ()] iz
2 1 2 1 2
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AAlerA21=_f{1/<1-p1<z>~p2<z>>}{<p{1’(z)p{z’(z)>[(1-p2<z>)/pl<z>1

+(p§l’(2)p§ )(Z)+pl )(Z)p( )(Z))

+ ;1)(z)p§2)(Z))[(l—pl(z))/pz(z)]} dz;

(2)

(1 )(z) replaced by

AA l‘ with 0( )(z) replaced by Py 2

(z) and p
péﬂ)(Z);

T313a3B31=“Z pl(z)pq(z)dz;

pl(Z)(l 0, (2)) dz;

P, (2) (1=p,(2)) dz;

BB.,= DB .= BB, .= BBQ2= 2 ? zpl(z)pz(z)dz;

00

BRy 5= B3,-= 2 f 2, (2) (1-p, (2))dz;

L3.,,~ B3, .= 2 | :;pz(z) (1.~-p2(z)) dz;
L2

BB,,= DB, ,= & f % pl\z)p7(z) dz;

2, =4 [ "zp (z) (L-p, {z;) dz;

- L - l‘ AN l\ . K

and

co 2
BB, = 4_£ 2", (2) (1-p, (2))dz.

We have been able to demonstrate the existence of the

integrals given by AAll, AAlz, and AA2:, but we have been unable to
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evaluate these integrals in a closed form. Therefore we have
resorted to numerical methods for the evaluation of these integrals,
A detailed discussion of the quadrature method that we used for the
evaluation of these integrals is given in the.bodk by Ralston.and
Wilf ([1960], page 242~-248).

In Table 7.9y we tabulate the values of the asymptotic
efficiency of'<:§#> for various values of the parameters of the
model (7.41). Az In addition to the values given in Table 7.9,

we also attempted to calculate the value of v for a,, = 0.70;

11

= 0.35; A,= 0.85; and A2= 0.04. Because of some problems with

%21 1

the numerical integration of the integrals for AA AAlZ’ and AA

11° 22°

we are not certain of the number of significant figures for the
value of v, which came out to be approximately 0.90. From a

visual examination of this tatle it can be seen that v becomes very
small as (Ai-kz) becomes small. This result is not inconsistent
with what we would expect, since for those cases when (Al-xz) is
small our model could just as well be reduced to two single
exponential equations, As (Al—xz) increases, we note that v does
take on some moderate values. In addition, this table also shows,
for the model being considered, that a similar relation exists

between v and (all-aZI),

Although we have not considered in this research the specific

problem of constructing confidence ellipsoids, this could be another
problem for consideration in future research. This general problem

is related to the problem of measuring the nonlinearity of a
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TABLE 7.9--Asymptotic efficiencies of the generalized Spearman

estimates of the exponential parameters in (7.41)

1 2 11 21
0.75 0.55 0.80 0.10 0.00016
0.95 0.65 0.80 0.10 0.00034
0.85 0.55 0.80 0.10 0.00058
0.95 0.55 0.80 0.10 0.00141
0.95 0.095 0.55 0.45 0.11725
0.90 0.080 0.55 0.45 0.15063
0.90 0.070 0.55 0.45 0.18792
0.875 0.065 0.55 0.45 0.20988
0.80 0.060 0.55 0.45 0.23140
0.85 0.060 0.55 0.45 0.23740
0.95 0.095 0.70 0.35 0.24239
0.90 0.080 0.70 0.35 0.31326
0.90 0.070 0.70 0.35 0.39507
0.875 0.065 0.70 0.35 0.44136
0.80 0.060 0.70 0.35 0.48052
0.85 0.060 0.70 0.35 0.49879
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nonlinear model, which was considered by Beale [1960] and Guttman
and Meeter [1965] and mentioned in Chapter 2 of this research. We
could test, by using the measure of nonlinearity given in
equation (2.17), to see if our models may reasonably be
approximated by a linear model. If the measure of nonlinearity
is small, then according to Beale, linear regression theory results

may be used to construct approximate confidence regions.

7.4 Some remarks

Although it must be remembered that the conclusions we
arrive at in this chapter are directly related to the particular
models considered, it might be useful to someone desiring to apply
one of the generalized estimation procedures developed in this
research to briefly summarize some of the results of these examples.
1) From a visual examination of the fitted equations in Figures 7,3
through 7.15, there does not appear to be a great deal of difference
between the equations fitted by the generalized partial totals
procedure and the generalized least squares procedure, or the
generalized Spearman estimation procedure and generalized least
squares. All of the procedures appear to give reasonably good fits.
2) For the particular model considered in this chapter, the values
of the asymptotic efficiency of the generalized partial totals
estimators of the exponential parameters were very small. Even in
the single exponential model the asymptotic efficiency was always

less than 0.27. So this particular criterion does not indicate that
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this estimation procedure has a great deal to offer when samples are
taken for a large number of points. However, if the assumptions
concerning the random variables and the spacing of the observations
of our model are satisfied, then this generalized partial totals
technique is easy to apply, compared to the generalized least
squares or iterative maximum likelihood procedure. In any case, we
can use these partial totals estimates as initial estimates for the
generalized least squares procedure.

3) For the particular model considered, the values of the
asymptotic efficiency of the generalized Spearman estimators of the
exponential parameters did achieve some moderately high values. In
addition, this technique has the advantage of being a simple
technique like the partial totals procedure. Although it may be

difficult to satisfy the assumptions concerning the spacing of the
observations and the random variables of a model under consideration,
we have already indicated in previous chapters how these assumptions
may be satisfied in particular experimental situations, e.g. in
numerous biological serial dilution experiments the observations are
taken at exponentially spaced values of the independent variable.
Just as we mentioned in connection with the generalized partial
totals estimators, we may always use the Spearman estimators as
initial estimators for the generalized least squares procedure.
However, because of its simplicity and relatively high asymptotic

efficiency for a model like (7.41), this method would be preferred
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to generalized least squares estimation for a model like (7.41) if
it is reasonable to assume that the coefficients as well as the

exponential parameters differ widely.




VIII. SUMMARY AND CONCLUSIONS

In this research we have generalized three nonlinear
estimation procedures so that we can apply them simultaneously
to a multiple equation regression model. These three generalized
procedures have been designated by the following names:
(1) generalized least squares estimation procedure;
(2) generalized partial totals estimation procedure; and
(3) generalized Spearman estimation procedure. We have shown
how the generalized least squares procedure may be applied to the
estimation of the parameters in the regression model given by
(1.2). Also we have shown how the other two generalized
procedures may be applied to the estimation of the parameters for
some of the members of the class of regression models specified
by (1.1) which arise in the analysis of compartmental models.
In order to give some motivation to the consideration of the
class of regression models given by (1.1), we have devoted the
third chapter to a discussion of tracer experiments and various
compartmental models.

In addition to the development and generalization of
these estimation procedures, we have also considered some of the

asymptotic properties of our estimators. We have demonstrated

204
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the consistency of our estimators, and for the generalized partial
totals and Spearman estimation procedures we have derived the
limiting distribution of the estimators of the nonlinear
parameters. We have also defined a measure of efficiency of the
estimators of the nonlinear parameters for the generalized partial
totals and generalized Spearman estimation procedures.

In the seventh chapter, we have applied the three
generalized estimation procedures to some sets of data from
particular regression models. For those sets of data from which we
calculated our generalized partial totals and generalized
Spearman estimates, we also calculated the generalized least
squares estimates of the parameters of our model. We have also
displayed some graphs of the original data with the fitted
regression equations. which may serve as a visual comparison of
the various techniques for the particular models considered.

In this chapter we have also evaluated, for some particular
regression models, the expressions for the asymptotic efficiency
of the estimators of the exponential parameters found by the
generalized partial totals and generalized Spearman estimation
procedures. This allows for another comparison of the various
estimation techniques.

Although the limited empirical comparisons contained in
the seventh chapter of this research do not allow a basis to
judge the various generalized estimation procedures in general,

there are some points that have been evident throughout this
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research. The generalized least squares procedure is applicable
to a larger class of regression models than the two other
generalized procedures, but the difficulty of applying this
procedure and the problems of convergence may be more important
than the advantage of wide applicability. The generalized partial
totals procedure has been extended to the estimation of the
parameters in a particular subclass of regression models given by
(1.1) when the observations are equally spaced, and the estimates
found by this procedure are much more easily obtained than the
least squares estimates. The generalized Spearman estimation
procedure also has the desirable characteristic of being easily
applied to the estimation of the parameters in a particular
subclass of the regression models given by (1.1), when the
observations are equ~lly spaced on a logarithmic scale, and,
in addition, has the advantage that the asymptotic efficiency of
the estimators of the exponential parameters achieves moderately
high values. Therefore if a model, to which the generalized
partial totals or generalized Spearman estimation procedures may
be applied, is appropriate, then these procedures provide
attractive alternatives to the complicated generalized least

squares procedure.
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